
pyrocore Documentation
Release 0.6.1

pyroscope

Sep 13, 2021

Getting Started

1 Contents of This Manual 3
1.1 Overview . 3
1.2 Installation Guide . 5
1.3 Configuration Guide . 8
1.4 User’s Manual . 14
1.5 Tips & How-Tos . 39
1.6 Advanced Features . 47
1.7 Custom Python Code . 63
1.8 Trouble-Shooting Guide . 75
1.9 Software Updates . 78
1.10 Tempita Templating Engine . 81
1.11 References . 89
1.12 License . 99
1.13 Experimental Features . 104
1.14 API Documentation . 109
1.15 Contributing Guidelines . 141
1.16 Indices & Tables . 142

Python Module Index 143

Index 145

i

ii

pyrocore Documentation, Release 0.6.1

pyrocore is a collection of tools for the BitTorrent protocol and especially the rTorrent client. They enable you to filter
rTorrent’s item list for displaying or changing selected items, also creating, inspecting and changing .torrent files,
and much more.

An optional daemon process named pyrotorque can add flexible queue management for rTorrent, starting items
added in bulk slowly over time according to customizable rules.

It can also watch a directory tree recursively for new metafiles using inotify. That means .torrent files you drop
anywhere into that watched tree are loaded instantaneously, without any polling and no extra configuration for nested
directories.

Note: The PyroScope command line utilities (i.e. pyrocore) are not the same as ‘rTorrent-PS‘_, and they work
perfectly fine without it; the same is true the other way ‘round. It’s just that both projects unsurprisingly have synergies
if used together, and some features do only work when both are present.

You absolutely must read the first three chapters Overview, Installation Guide, and Configuration Guide, and follow
their instructions. Otherwise pyrocore utilities won’t work at all or not properly, if you do not provide an adequate
config.ini file, and also modify the rTorrent one to provide some essential data and commands.

Once you got everything basically working, User’s Manual will show you all the common commands and use-cases.
Further chapters then explain more complex use-cases and features that might not appeal or apply to you.

Getting Started 1

pyrocore Documentation, Release 0.6.1

To get in contact and share your experiences with other users of PyroScope, join the rtorrent-community channel
pyroscope-tools on Gitter.

This is also the way to resolve any problems with or questions about your configuration and software installation.
Always look into the Trouble-Shooting Guide as a first measure, which is often the fastest way to get back to a working
system. That guide also explains how to efficiently report your problem when you cannot fix it yourself.

2 Getting Started

https://github.com/pyroscope
https://gitter.im/rtorrent-community/
https://gitter.im/rtorrent-community/pyroscope-tools

CHAPTER 1

Contents of This Manual

1.1 Overview

1.1.1 Introduction

pyrocore is part of the PyroScope family of projects, and offers a collection of tools for the BitTorrent Protocol and
especially the rTorrent client. This includes:

• Command Line Tools for automation of common tasks, like metafile creation, and filtering and mass-changing
your loaded torrents.

• rTorrent extensions like a rTorrent Queue Manager and statistics (work in progress).

• All this is based on the pyrocore Python package, that you can use for Writing Your Own Scripts for any
special needs that aren’t covered by the standard tools.

See the ScreenShotGallery if you want to get a first impression without installing the software.

3

https://github.com/pyroscope
https://github.com/pyroscope/rtorrent-ps/blob/master/docs/ScreenShotGallery.md

pyrocore Documentation, Release 0.6.1

To get in contact and share your experiences with other users of PyroScope, join the rtorrent-community channel
pyroscope-tools on Gitter.

This is also the way to resolve any problems with or questions about your configuration and software installation.
Always look into the Trouble-Shooting Guide as a first measure, which is often the fastest way to get back to a working
system. That guide also explains how to efficiently report your problem when you cannot fix it yourself.

1.1.2 Glossary

To help you better understand this manual, here are the definitions of some key concepts used in it.

(download) item An item loaded into rTorrent.

field An attribute of a download item, e.g. name, completed, and directory. Most of these you know from
rTorrent or ruTorrent, but PyroScope adds some of its own. They are used in conditions to filter items using the

4 Chapter 1. Contents of This Manual

https://github.com/pyroscope
https://gitter.im/rtorrent-community/
https://gitter.im/rtorrent-community/pyroscope-tools

pyrocore Documentation, Release 0.6.1

rtcontrol tool, and also name the things you want to print to the console when listing items. To get a full
list, use the rtcontrol --help-fields command.

metafile The term metafile means the .torrent file – using ‘torrent’ is avoided intentionally, because it’s often
used ambiguously to mean either the metafile or the data of a download item.

XMLRPC The protocol used to remotely control a running rTorrent process. Note that support for XMLRPC is an
option that must be activated when compiling the rTorrent binary, so make sure it’s active in your installation
when ‘nothing works’ for you. A quick way to check is calling the following command:

$ ldd $(command which rtorrent) | grep libxmlrpc.so
libxmlrpc.so.3 => /home/pyroscope/.local/rtorrent/0.9.6-PS-1.0/lib/

→˓libxmlrpc.so.3 ...

1.1.3 Quick Start Guide

Work through these chapters in order to get the software up and running, and to learn basic concepts of using the
command line tools.

• Installation Guide

• Configuration Guide

• User’s Manual

Consult the Trouble-Shooting Guide if anything goes wrong. Reporting an Issue, or Requesting a Feature explains
how to provide feedback in case you encounter a serious problem, or are missing a feature.

Warning: If you do a fresh installation of pyrocore in addition to an existing rTorrent one, you will need to follow
the instructions to Adding Missing Data to Your rTorrent Session, which fills in some data your already running
rTorrent instance is missing otherwise! So do not skip that section.

1.1.4 Further Information & Customization

• Tips & How-Tos highlights some specific use-cases and might give you some inspiration when solving your own
problems.

• Using Advanced Features requires some knowledge in the area Linux, Bash, and Python beyond a novice level,
but they enable you to customize your setup even further and handle very specific use-cases.

• Custom Python Code tells you about Writing Your Own Scripts as an easy way to automate anything that the
standard commands can’t do. There are more ways for adding your own custom logic, amongst them Defining
Custom Fields for adding user-defined fields, available in rtcontrol just like built-in ones.

• Software Updates explains how to get newer versions of this software after the initial installation.

• References provides details on technical background topics like XMLRPC, and links into the web with related
information.

1.2 Installation Guide

This chapter presents you with different installation options. If you start with an unconfigured host, consider using the
automated setup provided by the pimp-my-box project, which will install all you need for a fully working torrenting
setup including a default configuration.

1.2. Installation Guide 5

https://github.com/pyroscope/pimp-my-box#pimp-my-box

pyrocore Documentation, Release 0.6.1

Important: If you followed the Manual Turn-Key System Setup instructions of rTorrent-PS, or plan to do so, you
can skip this chapter, all installation steps are covered there already. They same holds true for using the just mentioned
pimp-my-box project.

These are the steps for a manual installation:

• Preparing Your Host

– Installing Dependency Packages

– Installing Python2

• Installing the pyrocore Package

– Option 1: Installing from GitHub

– Option 2: Installing from PyPI

As you can see, installing the software package itself can be done in two ways, choose one of them. Afterwards, the
freshly installed software must be provided with a configuration, as described in the Configuration Guide.

Note: Unless otherwise indicated by using sudo or mentioning it in the text, installation commands should not be run
as root, but in your normal user account, or else one you specifically created for installing rTorrent and pyrocore.

When commands and their output are both contained in a code box, $ represents the command prompt of your shell,
followed by the command you are supposed to enter. Do not enter the leading $!

Warning: The syntax of XMLRPC commands changed with rTorrent version 0.8.9, and continues to change.
Make sure that the versions of rTorrent and PyroScope you plan to install or update to are actually compatible.
There are compensation mechanisms in both projects, but there are limits to those — scan the respective changelogs
for breaking changes.

pyrocore 0.5+ will no longer support the old syntax, and thus not work with rTorrent 0.8.x versions. rTorrent 0.9.6
has the old commands disabled by default, and only a special command line switch will enable them again, for
now. Also, this documentation uses the new syntax (mostly).

1.2.1 Preparing Your Host

Installing Dependency Packages

Before installing pyrocore, some software packages need to be available on your machine, Python 2 among them.

On Debian-type systems (Debian, Ubuntu, Raspbian, . . .), the following ensures you have everything you need, in-
cluding packages necessary for installing from source:

sudo apt-get install python python-dev python-virtualenv python-pip \
python-setuptools python-pkg-resources git build-essential

On other Linux distributions, see the following section for further hints.

If you want to install everything in a dedicated user account, e.g. for security reasons, this will create a rtorrent
user when entered into a root shell:

6 Chapter 1. Contents of This Manual

https://rtorrent-ps.readthedocs.io/en/latest/install.html#debianinstallfromsource
https://github.com/pyroscope/pimp-my-box#pimp-my-box

pyrocore Documentation, Release 0.6.1

groupadd rtorrent
useradd -g rtorrent -G rtorrent,users -c "Torrent User" -s /bin/bash --create-home
→˓rtorrent
chmod 750 ~rtorrent
su - rtorrent -c "mkdir -p ~/bin"

Using such a dedicated account also makes sure you don’t need to have fear this software does anything malicious —
if it did, it’d be contained in that account. It also makes deinstallation or start-from-zero way less of a hassle.

Installing Python2

For Debian and derivatives, the apt-get command in the previous section already took care of everything.

Other Linux distributions usually come equipped with a Python 2.7 interpreter, but on very new releases, Python 3
may be the default and Python 2.7 just an option. In case you need to install Python 2, refer to Installing Python on
Linux and consider using pyenv.

The following shows how you can check what version you have as the default (the sample output is from Ubuntu
15.04):

$ /usr/bin/python --version
Python 2.7.9

Try calling /usr/bin/python2 in case the above shows a 3.* version.

1.2.2 Installing the pyrocore Package

Installing the software package itself can be done in two ways, choose one of them.

Important: If you want to switch over from an old installation to one in ~/.local, then move that old directory
away, before installation! Like this:

(cd ~/lib && mv pyroscope pyroscope-$(date +'%Y-%m-%d').bak)

Your existing configuration and data is not affected by this, but make sure you read the migration instructions in
Software Updates.

Option 1: Installing from GitHub

The recommended way to install this software is directly from its GitHub repository. To do that, use the following
commands:

mkdir -p ~/bin ~/.local
git clone "https://github.com/pyroscope/pyrocore.git" ~/.local/pyroscope

Pass "/usr/bin/python2", or whatever else fits, to the script as its
1st argument, if the default of "/usr/bin/python" is not a suitable
version.
~/.local/pyroscope/update-to-head.sh

Check success
pyroadmin --version # call "exec $SHELL -l" if this fails, and retry

1.2. Installation Guide 7

http://docs.python-guide.org/en/latest/starting/install/linux/
http://docs.python-guide.org/en/latest/starting/install/linux/
https://github.com/yyuu/pyenv#simple-python-version-management-pyenv

pyrocore Documentation, Release 0.6.1

You can choose a different install directory, just change the paths accordingly. If then anything fails, stop changing
things and stick to the trodden path.

If you previously had no ~/bin directory, call exec $SHELL -l to register it in the PATH of your current terminal
session – especially if you see an error message like pyroadmin: command not found.

If everything went OK, continue with the Configuration Guide.

Option 2: Installing from PyPI

If you chose to install a release version from the Python package repository (PyPI), the most simple but not best way is
calling pip install --user -U pyrocore, and make sure $HOME/.local/bin is in your $PATH. This
way is OK if you just want to use the tools for metafile handling, i.e. mktor, chtor, and lstor, but not the rTorrent
tools.

The recommended way using a dedicated virtualenv goes like this:

mkdir -p ~/bin ~/.local
/usr/bin/virtualenv --no-site-packages $_/pyroscope
cd $_
ln -nfs python bin/python-pyrocore
ln -nfs $PWD/bin/python-pyrocore ~/bin
. bin/activate
xargs -n1 pip install -U <<<"pip setuptools wheel"
pip uninstall -y distribute 2>/dev/null
pip install -U "pyrocore[templating]"
ln -nfs $(egrep -l '(from.pyrocore.scripts|entry_point.*pyrocore.*console_scripts)'
→˓$PWD/bin/*) ~/bin

Check success
pyroadmin --version # call "exec $SHELL -l" if this fails, and retry

If you previously had no ~/bin directory, call exec $SHELL -l to register it in the PATH of your current terminal
session – especially if you see an error message like pyroadmin: command not found.

If everything went OK, continue with the Configuration Guide.

1.3 Configuration Guide

Important: If you followed the Manual Turn-Key System Setup instructions of rTorrent-PS, or plan to do so, only the
Setting values in ‘config.ini’ section is of real importance, and you can read about and customize the config.ini
file at your leisure – the most important change is defining tracker aliases, to make handling announce URLs more
convenient, and to enable filtering by alias name in rtcontrol.

1.3.1 Introduction

After you installed the software as described in the previous chapter, you need to add personal configuration that is
loaded from the directory ~/.pyroscope containing the files config.ini and config.py. A default set can
be automatically created for you, see below for details.

For simple setups, you only need to edit the plain text file config.ini. The script config.py allows much
more detailed control over complex setups, at the price of you knowing at least the basics of the Python programming
language. See Advanced Features for that.

8 Chapter 1. Contents of This Manual

https://rtorrent-ps.readthedocs.io/en/latest/install.html#debianinstallfromsource

pyrocore Documentation, Release 0.6.1

Important: For a fresh installation of this software in addition to an existing rTorrent one, you will also need to back-
fill some data that your already running rTorrent instance is missing otherwise. If you skip this step, item filtering in
rtcontrol and other tools will not work correctly for existing items. More on that below.

In summary, you’ll perform these steps, explained in the sections that follow:

1. Create a directory with the default configuration.

2. Edit ~/.pyroscope/config.ini to adapt it to your needs, e.g. add tracker aliases.

3. Modify your ~/.rtorrent.rc to integrate necessary settings.

4. Back-fill some data into the rTorrent session.

To get in contact and share your experiences with other users of PyroScope, join the rtorrent-community channel

1.3. Configuration Guide 9

https://github.com/pyroscope
https://gitter.im/rtorrent-community/

pyrocore Documentation, Release 0.6.1

pyroscope-tools on Gitter.

This is also the way to resolve any problems with or questions about your configuration and software installation.
Always look into the Trouble-Shooting Guide as a first measure, which is often the fastest way to get back to a working
system. That guide also explains how to efficiently report your problem when you cannot fix it yourself.

1.3.2 Creating a set of default configuration files

To create your own configuration, the best way is to start from the default files that are part of your PyroScope
installation. To create them at the default location ~/.pyroscope, simply call this command:

pyroadmin --create-config

Note that you can delete any default setting from config.ini that you don’t want changed. These defaults are
always loaded before your own settings, from a copy the software keeps and updates.

Deleting unchanged defaults has the advantage that on software updates, you’ll automatically get the newer version
of settings, as soon as they’re updated. The created config.ini.default file is just for reference, and will be
overwritten on updates.

If you need several distinct configuration sets, just add the --config-dir option to commands like so:

pyroadmin --create-config --config-dir ~/rtorrent/special/.pyroscope

Alternatively, you can set the PYRO_CONFIG_DIR environment variable to change the default of ~/.pyrocscope.

To view your loaded configuration with all the system defaults added, use this (again, the --config-dir option
allows non-default configuration locations):

pyroadmin --dump-config

To start over with a pristine set of configuration files, and remove any stale ones, add the
--remove-all-rc-files option:

pyroadmin --remove-all-rc-files --create-config

Be aware that this really removes any *.rc and *.rc.default file in ~/.pyroscope and its subfolder
rtorrent.d, before writing a new set of files.

Note: Each PyroScope configuration file is accompanied by a matching *.default file that contains the system
defaults at the time you last called the pyroadmin --create-config command. These are over-written on
repeated calls (unlike the real config files), and are for informational purposes only.

For the rTorrent configuration files (rtorrent-pyro.rc[.default] and files in rtorrent.d), the rules are
different. These files change frequently, so the *.default versions are loaded usually, and you get an up-to-date
version on a rTorrent restart.

You can ignore specific files in rtorrent.d if they don’t fit or you want to provide your own version under another
name. See the files themselves for instructions.

1.3.3 Setting values in ‘config.ini’

The main configuration file consists of sections, led by a [section] header and followed by name: value
entries; name = value is also accepted. Longer values can be broken into several lines and the continuation lines
must be indented (start with a space). Note that leading whitespace is removed from values.

10 Chapter 1. Contents of This Manual

https://gitter.im/rtorrent-community/pyroscope-tools

pyrocore Documentation, Release 0.6.1

Lines beginning with a semicolon (;), a hash mark (#), or the letters REM (uppercase or lowercase) will be ignored and
can be used for comments. You cannot append a comment to an option line, a comment MUST start at the beginning
of a line!

As an example, this is a very minimal configuration file:

PyroScope configuration file
#
For details, see https://pyrocore.readthedocs.org/en/latest/setup.html
#

[GLOBAL]
Location of your rTorrent configuration
rtorrent_rc = ~/rtorrent/rtorrent.rc

XMLRPC connection to rTorrent
scgi_url = scgi://$HOME/rtorrent/.scgi_local

[FORMATS]
filelist = {{py:from pyrobase.osutil import shell_escape as quote}}{{#

}}{{for i, x in looper(d.files)}}{{d.realpath | quote}}/{{x.path | quote}}{{#
}}{{if i.next is not None}}{{chr(10)}}{{endif}}{{#

}}{{endfor}}

movehere = {{py:from pyrobase.osutil import shell_escape as quote}}{{#
}}mv {{d.realpath | quote}} .

Formats for UI commands feedback
tag_show = {{#}}Tags: {{ chr(32).join(d.tagged) }} [{{ d.name[:33] }}...]

[SWEEP]
Settings for the "rtsweep" tool

Use the rules from the named [SWEEP_RULES_‹name›] sections
default_rules = builtin, custom

Minimum amount of space that must be kept free (adds to the space request)
space_min_free = 10g

[SWEEP_RULES_CUSTOM]
Rules to manage disk space
#
Rules are ordered by the given priority. You can disable built-in rules
found in the [SWEEP_RULES_BUILTIN] section by changing "default_rules"
in the [SWEEP] section. Use "rtsweep show" to list active rules.
#
Default sort order for each rule is by "loaded" date (oldest first).
Note that active, prio 3, and ignored items are protected!
#
If the active rules fail to provide enough space, as much of the oldest
items as needed are removed.

Seeded and bigger than 500M after 7 days, inactive and big items first
seeded7d.prio = 910
seeded7d.sort = active,-size
seeded7d.filter = ratio=+1.2 size=+500m loaded=+7d

[ANNOUNCE]
(continues on next page)

1.3. Configuration Guide 11

pyrocore Documentation, Release 0.6.1

(continued from previous page)

Add alias names for announce URLs to this section; those aliases are used
at many places, e.g. by the "mktor" tool and to shorten URLs to these aliases

Public / open trackers
PBT = http://tracker.publicbt.com:80/announce

udp://tracker.publicbt.com:80/announce
PDT = http://files2.publicdomaintorrents.com/bt/announce.php
ArchOrg = http://bt1.archive.org:6969/announce

http://bt2.archive.org:6969/announce
OBT = http://tracker.openbittorrent.com:80/announce

udp://tracker.openbittorrent.com:80/announce
Debian = http://bttracker.debian.org:6969/announce
Linux = http://linuxtracker.org:2710/

Note: For advanced users: Values can contain format strings of the form %(name)s which refer to other values in
the same section, or values in the [DEFAULT] section.

1.3.4 Extending your ‘.rtorrent.rc’

The rTorrent configuation, typically located at ~/.rtorrent.rc or ~/rtorrent/rtorrent.rc, needs be
augmented with three things:

1. A valid XMLRPC configuration that quite often you already have because of web interfaces like ruTorrent.

2. A definition of a session directory, so state is saved between rTorrent restarts.

3. A standard configuration include that adds rTorrent commands and settings needed by rtcontrol. That
include also provides some convenient features, see Standard Configuration Explained for details.

You might already have these things, depending on what setup procedure you followed. Don’t add them twice.

Security Hint

Using network.scgi.open_port means any user on the machine you run rTorrent on can execute arbitrary
commands with the permission of the rTorrent runtime user. Most people don’t realize that, now you do! Also,
never use any other address than 127.0.0.1 with it.

XMLRPC and Session

You need either a network.scgi.open_local or network.scgi.open_port specification in your rTorrent
configuration, else XMLRPC cannot work; network.scgi.open_local is preferable since more secure. Fur-
thermore, you need to provide the path to a session directory via session.path. See the rTorrent documentation
for details.

Configuration Include

For the loaded and completed fields to work, as well as the started, leechtime and seedtime ones, you
also have to add these commands (note that most settings actually reside in an included file):

12 Chapter 1. Contents of This Manual

https://github.com/pyroscope/pyrocore/blob/master/src/pyrocore/data/config/rtorrent-pyro.rc

pyrocore Documentation, Release 0.6.1

#
PyroScope SETTINGS
#

`system.has` polyfill (the "false=" silences the `catch` command, in rTorrent-PS)
catch = {"false=", "method.redirect=system.has,false"}

Set "pyro.extended" to 1 to activate rTorrent-PS features!
(the automatic way used here only works with rTorrent-PS builds after 2018-05-30)
method.insert = pyro.extended, const|value, (system.has, rtorrent-ps)

Set "pyro.bin_dir" to the "bin" directory where you installed the pyrocore tools!
Make sure you end it with a "/"; if this is left empty, then the shell's path is
→˓searched.
method.insert = pyro.bin_dir, string|const,

Remove the ".default" if you want to change something (else your changes
get over-written on update, when you put them into ``*.default`` files).
import = ~/.pyroscope/rtorrent-pyro.rc.default

TORQUE: Daemon watchdog schedule
Must be activated by touching the "~/.pyroscope/run/pyrotorque" file!
Set the second argument to "-v" or "-q" to change log verbosity.
schedule = pyro_watchdog,30,300,"pyro.watchdog=~/.pyroscope,"

For a complete example, see this rtorrent.rc (and the _rtlocal.rc file it includes). These add even more extensions
on top of the features mentioned at Standard Configuration Explained, by loading the snippets in ~/rtorrent/
rtorrent.d.

Important: Remember to restart rTorrent for any new configuration to take effect.

If you also installed the rTorrent-PS distribution of rTorrent, do not forget to activate the extended features available
with it. Starting with version 1.1, that activation is automatic, as shown above. In older builds, set pyro.extended
to 1 in the above configuration.

1.3.5 Adding Missing Data to Your rTorrent Session

Now that you have the additional configuration, newly loaded items will get the correct values set – but existing items
are still missing them, and so those items will not always be filtered correctly. If you just started with a fresh install
and have no items added to rTorrent yet, you can ignore this section.

Important: Paste the command blocks further below wholesale into a terminal prompt. Either what is between two
comments, or else single commands – indented lines are part of one command that starts on an unindented line.

To add the missing data, call these commands:

Make a full, current backup of the session data
rtxmlrpc -q session.save
tar cvfz ~/session-backup-$(date +'%Y-%m-%d').tgz \

$(echo $(rtxmlrpc session.path)/ | tr -s / /)*.torrent*

Set missing "loaded" times to that of the .torrent file or data path

(continues on next page)

1.3. Configuration Guide 13

https://github.com/pyroscope/pimp-my-box/blob/master/roles/rtorrent-ps/templates/rtorrent/rtorrent.rc
https://github.com/pyroscope/pimp-my-box/blob/master/roles/rtorrent-ps/templates/rtorrent/_rtlocal.rc
https://github.com/pyroscope/rtorrent-ps

pyrocore Documentation, Release 0.6.1

(continued from previous page)

rtcontrol loaded=0 metafile='!' -q -sname -o '{{py:from pyrobase.osutil import shell_
→˓escape as quote}}

echo {{d.name | quote}}
test ! -f {{d.metafile | quote}} || rtxmlrpc -q d.custom.set {{d.hash}} tm_loaded

→˓\$(stat -c "%Y" {{d.metafile | quote}})
rtxmlrpc -q d.save_full_session {{d.hash}}' | bash +e

rtcontrol loaded=0 is_ghost=no path='!' -q -sname -o '{{py:from pyrobase.osutil
→˓import shell_escape as quote}}

echo {{d.name | quote}}
test ! -e {{d.realpath | quote}} || rtxmlrpc -q d.custom.set {{d.hash}} tm_loaded

→˓\$(stat -c "%Y" {{d.realpath | quote}})
rtxmlrpc -q d.save_full_session {{d.hash}}' | bash +e

Set missing "completed" times to that of the data file or directory
rtcontrol completed=0 done=100 path='!' is_ghost=no -q -sname -o '{{py:from pyrobase.
→˓osutil import shell_escape as quote}}

echo {{d.name | quote}}
test ! -e {{d.realpath | quote}} || rtxmlrpc -q d.custom.set {{d.hash}} tm_

→˓completed \$(stat -c "%Y" {{d.realpath | quote}})
rtxmlrpc -q d.save_full_session {{d.hash}}' | bash +e

It’s safe to call them repeatedly, since existing values are kept unchanged.

To check, use the command rtcontrol completed=-1d -scompleted which should now show your com-
pleted downloads of the last 24 hours, in order.

Continue with the User’s Manual to get to know all the commands.

1.4 User’s Manual

This chapter provides an overview of all the command line tools and their everyday use, focussing on rtcontrol as
the most powerful of them. The following chapters then go into more advanced use-cases and features.

1.4.1 Command Line Tools

Overview of CLI Tools

rtcontrol is the work-horse for rTorrent automation, it takes filter conditions of the form ‹field›=‹value›
and selects a set of download items according to them. That result can then be printed to the console according to
a specified format, or put into any rTorrent view for further inspection. You can also take some bulk action on the
selected items, e.g. starting, stopping, or deleting them.

rtxmlrpc sends single XMLRPC commands to rTorrent, and rtmv allows you to move around the data of download
items in the file system, while continuing to seed that data.

The following commands help you with managing metafiles:

• lstor safely lists their contents in various formats.

• mktor creates them, with support for painless cross-seeding.

• chtor changes existing metafiles, e.g. to add fast-resume information.

• hashcheck simply checks data against a given metafile’s piece hashes.

14 Chapter 1. Contents of This Manual

pyrocore Documentation, Release 0.6.1

pyrotorque is a companion daemon process to rTorrent that handles automation tasks like queue management,
instant metafile loading from a directory tree via file system notifications, and other background tasks.

rtsweep cleans up disk space following rules in a given order. These rules are part of the configuration and determine
what to delete first when disk space is needed for new items.

pyroadmin is a helper for administrative tasks (mostly configuration handling). and rtevent is experimental and
incomplete.

Bash Completion

If you don’t know what bash completion is, or want to handle this later, you can skip to Common Options.

Using completion

In case you don’t know what bash completion looks like, watch this. . .

Every time you’re unsure what options you have, you can press TAB twice to get a menu of choices, and if you already
know roughly what you want, you can start typing and save keystrokes by pressing TAB once, to complete whatever
you provided so far.

So for example, enter a partial command name like rtco and then TAB to get rtcontrol, then type -- followed
by 2 times TAB to get a list of possible command line options.

Activating completion

To add pyrocore’s completion definitions to your shell, call these commands:

pyroadmin --create-config
touch ~/.bash_completion
grep /\.pyroscope/ ~/.bash_completion >/dev/null || \

echo >>.bash_completion ". ~/.pyroscope/bash-completion.default"
. /etc/bash_completion

After that, completion should work, see the above section for things to try out.

Note: On Ubuntu, you need to have the bash-completion package installed on your machine. Other Linux
systems will have a similar pre-condition.

Common Options

All commands share some common options.

--version
Show the command’s version number and exit.

-h, --help
Show the command’s help information and exit.

-q, --quiet
Omit informational logging, like the time it took to run the command.

1.4. User’s Manual 15

pyrocore Documentation, Release 0.6.1

-v, --verbose
Increase informational logging, including some of the internal operations like configuration loading, and XML-
RPC statistics.

--debug
Always use --debug when including logs in a bug report, since it shows stack traces for errors even when
normally they’d be replaced by a more friendlier error message.

This option also generates even more logging output than -v , including detailed XMLRPC diagnostics. Often
it’ll point you to the root of a problem, so you don’t have to create an issue.

--config-dir <DIR>
Use a different configuration directory instead of the ~/.pyroscope default one.

Also see the PyroScope CLI Tools Usage section for an automatically generated and thus comprehensive listing of all
the current options.

PYRO_CONFIG_DIR
New in version 0.6.1.

This environment variable can be used to change the default ~/.pyrocscope of the --config-dir option,
for the duration of a shell session, or within a systemd unit.

mktor

mktor creates *.torrent files (metafiles), given the path to the data in a file, directory, or named pipe (more on
that below) and a tracker URL or alias name (see Setting values in ‘config.ini’ on how to define aliases). Optionally,
you can also set an additional comment and a different name for the resulting torrent file. Peer exchange and DHT can
be disabled by using the --private option.

If you want to create metafiles in bulk, use one of the many options a Linux shell offers you, among them:

• Anything in the current directory:

ls -1 | xargs -d$'\n' -I{} mktor -p -o /tmp "{}" "$ANNOUNCE_URL"

• Just for directories:

find . -mindepth 1 -maxdepth 1 -type d \! -name ".*" -print0 | sort -z \
| xargs -0I{} mktor -p "{}" "$ANNOUNCE_URL"

You can also load freshly created metafiles directly into the client, add either the --load or --start option de-
pending on the state you want the new item to be in initially. Note that files are still created and the item is tied to them
– if you use fast-resume, the augmented metafile is loaded of course.

If you create torrents for different trackers, they’re automatically enabled for cross-seeding, i.e. you can load several
torrents for exactly the same data into your client. For the technically inclined, this is done by adding a unique key
so that the info hash is always different. Use the --no-cross-seed option to disable this. You can also set the
‘source’ field many trackers use for unique info hashes, use -s info.source=LABEL for that.

To exclude files stored on disk from the resulting torrent, use the --exclude option to extend the list of standard glob
patterns that are ignored. These standard patterns are: core, CVS, .*, *~, *.swp, *.tmp, *.bak, [Tt]humbs.
db, [Dd]esktop.ini, and ehthumbs_vista.db.

The --fast-resume option creates a second metafile *-resume.torrent that contains special entries which,
when loaded into rTorrent, makes it skip the redundant hashing phase (after all, you hashed the files just now). It is
very important to upload the other file without resume in its name to your tracker, else you cause leechers using
rTorrent problems with starting their download.

16 Chapter 1. Contents of This Manual

pyrocore Documentation, Release 0.6.1

As a unique feature, if you want to change the root directory of the torrent to something different than the basename
of the data directory, you can do so with the --root-name option. This is especially useful if you have hierarchical
paths like documents/2009/myproject/specs - normally, all the context information but specs would be
lost on the receiving side. Just don’t forget to provide a symlink in your download directory with the chosen name that
points to the actual data directory.

Very few people will ever need that, but another advanced feature is concurrent hashing — if the first argument is a
named pipe (see the mkfifo man page), the filenames to be hashed are read from that pipe. These names must be
relative to the directory the named pipe resides in, or put another way, the named pipe has to be created in the same
directory as the files to be hashed. For example, this makes it possible to hash files as they arrive via FTP or are
transcoded from one audio format to another, reducing overall latency. See the fifotest script for a demonstration of
the concept.

lstor

lstor lists the contents of bittorrent metafiles. The resulting output looks like this:

NAME pavement.torrent
SIZE 3.6 KiB (0 * 32.0 KiB + 3.6 KiB)
HASH 2D1A7E443D23907E5118FA4A1065CCA191D62C0B
URL http://example.com/
PRV NO (DHT/PEX enabled)
TIME 2009-06-06 00:49:52
BY PyroScope 0.1.1

FILE LISTING
pavement.py 3.6 KiB

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NAME tests.torrent
SIZE 2.6 KiB (0 * 32.0 KiB + 2.6 KiB)
HASH 8E37EB6F4D3807EB26F267D3A9D31C4262530AB2
URL http://example.com/
PRV YES (DHT/PEX disabled)
TIME 2009-06-06 00:49:52
BY PyroScope 0.1.1

FILE LISTING
pyroscope tests/

test_bencode.py 2.6 KiB

lstor has these options:

--reveal show full announce URL including keys
--raw print the metafile's raw content in all detail
-V, --skip-validation

show broken metafiles with an invalid structure
--output=KEY,KEY1.KEY2,...

select fields to print, output is separated by TABs;
note that __file__ is the path to the metafile,
__hash__ is the info hash, and __size__ is the data
size in byte

Starting with v0.3.6, you can select to output specific fields from the metafile, like this:

1.4. User’s Manual 17

https://github.com/pyroscope/pyrocore/blob/master/src/tests/fifotest.sh


pyrocore Documentation, Release 0.6.1

$ lstor -qo __hash__,info.piece\ length,info.name *.torrent
00319ED92914E30C9104DA30BF39AF862513C4C8 262144 Execute My Liberty - The Cursed
→˓Way -- Jamendo - OGG Vorbis q7 - 2010.07.29 [www.jamendo.com]

This can also be used to rename ‹infohash›.torrent metafiles from a session directory to a human readable
name, using parts of the hash to ensure unique names:

ls -1 *.torrent | egrep '^[0-9a-fA-F]{40}\.torrent' | while read i; do
humanized="$(lstor -qo info.name,__hash__ "$i" | awk -F$'\t' '{print $1"-"substr(

→˓$2,1,7)}')"
mv "$i" "$humanized.torrent"

done

And to see a metafile with all the guts hanging out, use the --raw option:

{'announce': 'http://tracker.example.com/announce',
'created by': 'PyroScope 0.3.2dev-r410',
'creation date': 1268581272,
'info': {'length': 10,

'name': 'lab-rats',
'piece length': 32768,
'pieces': '<1 piece hashes>',
'x_cross_seed': '142e0ae6d40bd9d3bcccdc8a9683e2fb'},

'libtorrent_resume': {'bitfield': 0,
'files': [{'completed': 0,

'mtime': 1283007315,
'priority': 1}],

'peers': [],
'trackers': {'http://tracker.example.com/announce': {'enabled

→˓': 1}}},
'rtorrent': {'chunks_done': 0,

'complete': 0,
'connection_leech': 'leech',
'connection_seed': 'seed',
'custom': {'activations': 'R1283007474P1283007494R1283007529P1283007537

→˓',
'kind': '100%_',
'tm_loaded': '1283007442',
'tm_started': '1283007474'},

'custom1': '',
'custom2': '',
'custom3': '',
'custom4': '',
'custom5': '',
'directory': '~/rtorrent/work',
'hashing': 0,
'ignore_commands': 1,
'key': 357633323,
'loaded_file': '~/rtorrent/.session/

→˓38DE398D332AE856B509EF375C875FACFA1C939F.torrent',
'priority': 2,
'state': 0,
'state_changed': 1283017194,
'state_counter': 4,
'throttle_name': '',
'tied_to_file': '~/rtorrent/watch/lab-rats.torrent',
'total_uploaded': 0,
'views': []}}

18 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

chtor

chtor is able to change common attributes of a metafile, or clean any non-standard data from them (namely, rTorrent
session information).

Note that chtor automatically changes only those metafiles whose existing announce URL starts with the scheme
and location of the new URL when using --reannounce. To change all given metafiles unconditionally, use the
--reannounce-all option and be very sure you provide only those files you actually want to be changed.

chtor only rewrites metafiles that were actually changed, and those changes are first written to a temporary file,
which is then renamed.

rtcontrol

Purpose

rtcontrol allows you to select torrents loaded into rTorrent using various filter conditions. You can then either display
the matches found in any rTorrent view for further inspection, list them to the console using flexible output formatting,
or perform some management action like starting and stopping torrents. Using ‘rtxmlrpc’ shows examples for sending
commands that don’t target a specific item.

For example, the command rtcontrol up=+0 up=-10k will list all torrents that are currently uploading any
data, but at a rate of below 10 KiB/s. See the ‘rtcontrol’ Examples for more real-world examples, and the following
section on basics regarding the filter conditions.

Filter Conditions

Filter conditions take the form ‹field›=‹value›, and by default all given conditions must be met (AND). If a
field name is omitted, name is assumed. Multiple values separated by a comma indicate several possible choices (OR).
! in front of a filter value negates it (NOT). Use uppercase OR to combine multiple alternative sets of conditions. And
finally brackets can be used to group conditions and alter the default “AND before OR” behaviour; be sure to separate
both the opening and closing bracket by white space from surrounding text. NOT at the start of a bracket pair inverts
the contained condition.

For string fields, the value is a glob pattern which you are used to from shell filename patterns (*, ?, [a-z], [!
a-z]); glob patterns must match the whole field value, i.e. use *...* for ‘contains’ type searches. To use regex
matches instead of globbing, enclose the pattern in slashes (/regex/). Since regex can express anchoring the match
at the head (^) or tail ($), they’re by default of the ‘contains’ type. All string comparisons are case-ignoring.

If a string field’s filter value starts with {{ or ends with }}, it is evaluated as a template for each item before matching
it with the current field value. See Using Templates as Filter Values for a practical use of that.

For numeric fields, a leading + means greater than, a leading - means less than (just like with the standard find
command).

Selection on fields that are lists of tags or names (e.g. tagged and views) works by just providing the tags you
want to search for. The difference to the glob patterns for string fields is that tagged search respects word boundaries
(whitespace), and to get a match the given tag just has to appear anywhere in the list (bar matches on foo bar
baz).

In time filtering conditions (e.g. for the completed and loaded fields), you have three possible options to specify
the value:

1. time deltas in the form “<number><unit>...”, where unit is a single upper- or lower-case letter and one of
Year, Month, Week, Day, Hour, mInute, or Second. The order is important (y before m), and a + before the delta
means older than, while - means younger than.

1.4. User’s Manual 19

http://docs.python.org/library/fnmatch.html
http://docs.python.org/howto/regex.html
http://docs.python.org/howto/regex.html


pyrocore Documentation, Release 0.6.1

Example: -1m2w3d

2. a certain date and time in human readable form, where the date can be given in ISO (Y-M-D), American (M/
D/Y), or European (D.M.Y) format. A date can be followed by a time, with minutes and seconds optional and
separated by :. Put either a space or a T between the date and the time.

Example: +2010-08-15t14:50

3. absolute numerical UNIX timestamp, i.e. what ls -l --time-style '+%s' returns.

Example: +1281876597

See Useful Filter Conditions for some concrete examples with an explanation of what they do.

Annealing Results

Using the --anneal option, you can add some pre-defined post-processing steps that modify the current result set.
You can use this option several times to combine processing steps in the order given on the command line. Sorting
is done first, and if anything changes, the modified result is sorted again before applying the next step. Note that any
--select restrictions are applied after annealing.

The available processing methods are these:

dupes+ Adds any loaded item that shares the same base directory with any existing result item, or points to the same
file. Note that symlinks are followed, but hardlinks are always considered independent (which they are when
deleted). This is especially useful in combination with --cull to avoid leaving items with some or all of their
files gone.

dupes- Removes items from the result that share the same path with any other loaded item, as described for dupes+,
that is not also part of the result. Again, combination with --cull is a typical use-case, to avoid deleting data
of items that still need to be seeded, when only some of a set of duplicated items meet the deletion criteria.

dupes= Removes any items from the result that are not dupes, as defined above, leaving only the dupes. Combine
with invert to only get singular items.

invert Invert the current selection, i.e. select any item in the original result (before any annealing happened) that is
not in the current selection.

unique Ensures that only the first item in the result set having the same name as other items in the result set is kept.
The others are removed. Note that unlike with ‘dupes’, the scope here is only the current result set, not all
loaded items.

See Safely Remove One Tracker’s Items for a practical example using this.

Warning: If you use options that cause rtcontrol to request only a subset of all loaded items, then all dupes*
methods will produce results that might be unexpected, since they look at all available items, not just the selected
ones. And ‘all’ is different if you change the view, or use the -Q option – for that reason, you’ll get a warning if
you mix -A with these.

rtxmlrpc

rtxmlrpc allows you to call raw XMLRPC methods on the rTorrent instance that you have specified in your configura-
tion. See the usage information for available options.

The method name and optional arguments are provided using standard shell rules, i.e. where you would use
^X throttle_down=slow,120 in rTorrent you just list the arguments in the usual shell way (rtxmlrpc

20 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

throttle_down slow 120). The rTorrent format is also recognized though, but without any escaping rules
(i.e. you cannot have a , in your arguments then).

Remember that almost all commands require a ‘target’ as the first parameter in newer rTorrent versions, and you have
to provide that explicitly. Thus, it must be rtxmlrpc view.size '' main, with an extra empty argument –
otherwise you’ll get a Unsupported target type found fault.

There are some special ways to write arguments of certain types: +‹number› and -‹number› send an integer
value, @‹filename›, @‹URL›, or @- (for stdin) reads the argument’s content into a XMLRPC binary value, and
finally [‹item1›〈,‹item2›,...〉 produces an array of strings. These typed arguments only cover some common
use-cases, at some point you have to write Python code to build up more intricate data structures.

The @‹URL› form supports http, https, and ftp, here is an example call:

$ rtxmlrpc load.raw_verbose '' \
@"https://cdimage.debian.org/debian-cd/current/amd64/bt-cd/debian-9.0.0-amd64-

→˓netinst.iso.torrent"
0

To get a list of available methods, just call rtxmlrpc system.listMethods. The Using ‘rtxmlrpc’ section
shows some typical examples for querying global information and controlling rTorrent behaviour.

rtsweep

NOT IMPLEMENTED YET! https://github.com/pyroscope/pyrocore/issues/7

The rtsweep command provides means to perform automatic disk space management. It does so by deleting items
loaded into rTorrent, including their data, following rules in the configuration that define an order of what to remove
first.

The required space is passed as the first argument, either in bytes or qualified with a unit character (K=KiB, M=MiB,
G=GiB). Alternatively, you can pass a metafile path, with the requirement calculated from its content size.

rtsweep has these options:

-n, --dry-run do not remove anything, just tell what would happen
-p PATH, --path=PATH path into the filesystem to sweep (else the default download
→˓location)
-r RULESET [-r ...], --rules=RULESET [-r ...]

name the ruleset(s) to use, instead of the default ones

Use rtsweep show to list the active rules, ordered by their priority. To only display built-in rules, call rtsweep
-r builtin show.

Sweeping Rules

Rules are defined in the [SWEEP_RULES_CUSTOM] section, as shown here including some further explanations:

[SWEEP_RULES_CUSTOM]
# Rules to manage disk space
#
# Rules are ordered by the given priority. You can disable built-in rules
# found in the [SWEEP_RULES_BUILTIN] section by changing "default_rules"
# in the [SWEEP] section. Use "rtsweep show" to list active rules.
#
# Default sort order for each rule is by "loaded" date (oldest first).
# Note that active, prio 3, and ignored items are protected!

(continues on next page)

1.4. User’s Manual 21

https://github.com/pyroscope/pyrocore/issues/7


pyrocore Documentation, Release 0.6.1

(continued from previous page)

#
# If the active rules fail to provide enough space, as much of the oldest
# items as needed are removed.

# Seeded and bigger than 500M after 7 days, inactive and big items first
seeded7d.prio = 910
seeded7d.sort = active,-size
seeded7d.filter = ratio=+1.2 size=+500m loaded=+7d

Rules are applied in the order of their priority. If a rule fails to provide more items to delete, the next rule is tried, until
there are no more configured rules. Finally, if there is still not enough free space, any unprotected item is fair game,
using the default order from SWEEP::default_order.

Also keep in mind that only items stored on the targeted file system are considered. It is defined by the --path
option; rTorrent’s default download location is used when no explicit path is provided.

The built-in rules are these:

[SWEEP_RULES_BUILTIN]
# Builtin rules, disable by changing "default_rules"

# Full BD / Remux older than 7 days
bluray.prio = 100
bluray.filter = /BLURAY/,/Remux/ size>14g loaded>7d

# Bigger items with ratio > 3 and older than 5 days
seeded.prio = 200
seeded.order = active,-size
seeded.filter = size>3g ratio>3 loaded>5d

# 1080p after 2 weeks
video1080p.prio = 500
video1080p.filter = /1080p/ loaded>15d

# 720p after 3 weeks
video720p.prio = 550
video720p.filter = /720p/ loaded>22d

# Bigger than 1.5G after 5 days, inactive and big items first
big5d.prio = 900
big5d.order = active,-size
big5d.filter = size>1.5g loaded>5d

Other rtsweep Configuration

You can also change some fundamental settings regarding the behaviour of rtsweep, of which space_min_free
is the most likely you want to adapt:

[SWEEP]
# Settings for the "rtsweep" tool

# Use the rules from the named [SWEEP_RULES_‹name›] sections
default_rules = builtin, custom

# Filter for protected items (active, prio 3, and ignored items by default)

(continues on next page)

22 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

filter_protected = last_xfer<1h OR prio=3 OR is_ignored=y

# Maximum amount of space that can be requested in one go
space_max_request = 99g

# Minimum amount of space that must be kept free (adds to the space request)
space_min_free = 10g

# Default sort order within each rule
default_order = loaded

rtmv

With rtmv, you can move actively seeded data around at will. Currently, it only knows one mode of operation, namely
moving the data directory or file and leave a symlink behind in its place (or fixing the symlink if you move data around
a second time). Watch this example that shows what’s going on internally:

~/bt/rtorrent/work$ rtmv lab-rats /tmp/ -v
DEBUG Found "lab-rats" for 'lab-rats'
INFO Moving to "/tmp/lab-rats"...
DEBUG Symlinking "~/bt/rtorrent/work/lab-rats"
DEBUG rename("~/bt/rtorrent/work/lab-rats", "/tmp/lab-rats")
DEBUG symlink("/tmp/lab-rats", "~/bt/rtorrent/work/lab-rats")
INFO Moved 1 path (skipped 0)

$ rtmv /tmp/lab-rats /tmp/lab-mice -v
DEBUG Item path "~/bt/rtorrent/work/lab-rats" resolved to "/tmp/lab-rats"
DEBUG Found "lab-rats" for '/tmp/lab-rats'
INFO Moving to "/tmp/lab-mice"...
DEBUG Re-linking "~/bt/rtorrent/work/lab-rats"
DEBUG rename("/tmp/lab-rats", "/tmp/lab-mice")
DEBUG remove("~/bt/rtorrent/work/lab-rats")
DEBUG symlink("/tmp/lab-mice", "~/bt/rtorrent/work/lab-rats")

From the second example you can see that you can rename actively seeding downloads in mid-flight, i.e. to fix a bad
root directory name.

You can use rtmv in combination with rtcontrol --call for very flexible completion moving. To facilitate
this, if there is a double slash // in the target path, it is always interpreted as a directory (i.e. you cannot rename the
source file in that case), and the partial path after the // is automatically created. This can be used in completion
moving, to create hierarchies for dynamic paths built from rtcontrol fields. Since the part before the // has to
exist beforehand, this won’t go haywire and create directory structures just anywhere.

Note: Future modes of operation will include copying instead of moving, moving and fixing the download directory
in rTorrent (like classical rtorrent completion event handling), and moving across devices (i.e. copying and then
deleting).

rtevent

Not yet implemented

rtevent handles rTorrent events and provides common implementations for them, like completion moving. See Even-
tHandling for details on using it.

1.4. User’s Manual 23



pyrocore Documentation, Release 0.6.1

1.4.2 ‘rtcontrol’ Examples

Useful Filter Conditions

The following rtcontrol Filter Conditions give you a hint on what you can do, and some building blocks for more
complex conditions.

*HDTV* Anything with “HDTV” in its name

/s\d+e\d+/ Anything with typical TV episode numbering in its name (regex match)

ratio=+1 All downloads seeded to at least 1:1

xfer=+0 All active torrents (transferring data)

up=+0 All seeding torrents (uploading data)

down=+0 down=-5k Slow torrents (downloading, but with < 5 KiB/s)

down=0 is_complete=no is_open=yes Stuck torrents

size=+4g Big stuff (DVD size or larger)

is_complete=no Incomplete downloads

is_open=y is_active=n Paused items

is_ghost=yes Torrents that have no data (were never started or lost their data; since v0.3.3)

alias=obt Torrents tracked by openbittorrent.com (see Configuration Guide on how to add aliases for trackers)

'path=!' Has a non-empty path

ratio=+1 realpath=\!/mnt/* 1:1 seeds not on a mounted path (i.e. likely on localhost)

completed=+2w Completed more than 2 weeks ago (since v0.3.4)

tagged= Not tagged at all (since v0.3.5)

tagged=\! Has at least one tag (since v0.3.5)

tagged=foo,bar Tagged with “foo” or “bar” (since v0.3.5) — tags are white-space separated lists of names in the
field custom_tags

tagged==highlander Only tagged with “highlander” and nothing else (since v0.3.6)

kind=flac,mp3 Music downloads (since v0.3.6)

files=sample/* Items with a top-level sample folder (since v0.3.6)

ratio=+2.5 OR seedtime=+1w Items seeded to 5:2 or for more than a week (since v0.3.6)

alias=foo [ ratio=+2.5 OR seedtime=+7d ] The same as above, but for one tracker only (since
v0.3.7)

traits=avi traits=tv,movies TV or movies in AVI containers (since v0.3.7)

Note that the ! character has to be escaped in shell commands. For a current full list of all the field names and
their meaning, see the output of the --help-fields option of rtcontrol which gives you a complete list for your
installation.

24 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

Integrating ‘rtcontrol’ into the Curses UI

Anyone who ever dreamt about a search box in their rtorrent UI, dream no more. . .

Note: You already have the following configuration commands, if you followed the Configuration Guide.

Just add this to your .rtorrent.rc:

# VIEW: Use rtcontrol filter (^X s=KEYWORD, ^X t=TRACKER, ^X f="FILTER")
method.insert = s,simple|private,"execute.nothrow=rtcontrol,--detach,-qV,\"$cat=*,
→˓$argument.0=,*\""
method.insert = t,simple|private,"execute.nothrow=rtcontrol,--detach,-qV,\"$cat=\\\
→˓"alias=\\\",$argument.0=\""
method.insert = f,simple|private,"execute.nothrow=rtcontrol,--detach,-qV,$argument.0="

You can of course add as many commands as you like, and include sorting options and whatever else rtcontrol
offers.

The ‘trick’ here is the -V (--view-only) option, which shows the selection result in a rTorrent view instead of on
the console. You can add this to any query you execute on the command line, and then interactively work with the
result. The above commands are just shortcuts for common use-cases, directly callable from the curses UI.

Reports

Using bash Aliases for Common Reports

You might want to add the following alias definitions to your ~/.bashrc:

alias rt2days="rtcontrol -scompleted -ocompleted,is_open,up.sz,ratio,alias,name
→˓completed=-2d"
alias rtls="rtcontrol -qo '{{chr(10).join([d.directory+chr(47)+x.path for x in d.
→˓files])|h.subst(chr(47)+chr(43),chr(47))}}'"

rt2days gives the completion history of the last 48 hours, and rtls lets you create lists of files just like ls:

$ rtls /a.boy/ | xargs -d'\n' ls -lgGh
-rw-r----- 1 702M Mar 7 17:42 /var/torrent/work/A_Boy_and_His_Dog.avi

If you feed the list of paths into normal ls as shown, you have all the usual options available to you.

Note: See the rt-alias.sh file of the pimp-my-box project for these and some more aliases.

Defining and Using Custom Output Formats

Before describing the possible options for output formatting in more details below, here’s a short overview of the
possible methods, each with an example:

• size.sz,name — simple field lists, possibly with format specifiers; in the output, fields are separated by a
TAB character.

1.4. User’s Manual 25

http://www.youtube.com/watch?v=y8gHEfA1w3Y
https://github.com/pyroscope/pimp-my-box/blob/master/roles/pyroscope-cli/files/profile.d/rt-alias.sh
https://github.com/pyroscope/pimp-my-box/


pyrocore Documentation, Release 0.6.1

• %(size.sz)s %(name)s — string interpolation, i.e. like the above lists, but interspersed with literal text
instead of TABs.

• {{d.size|sz}} {{d.name}} — Tempita templates, see Using Output Templates for more details.

• file:template.tmpl — File URLs that point to a template file, which is especially useful for more com-
plicated templates. The filenames can be absolute (starting with a /), relative to your home (starting with a ~),
or relative to templates in the configuration directory (anything else).

• «formatname» — A name of a custom format from the [FORMATS] configuration section, see ~/.
pyroscope/config.ini.default for the predefined ones (including the special default format).

Starting with version 0.3.5, you can define custom output formats and print column headers, the rt2days example
from the previous section becomes this:

alias rt2days="rtcontrol --column-headers -scompleted -ocompletion completed=-2d"

You need to define the custom output format used there, so also add this to your ~/.pyroscope/config.ini:

[FORMATS]
# Custom output formats
completion = $(completed.raw.delta)13.13s $(leechtime)9.9s $(is_open)4.4s $(up.sz)10s/
→˓s $(ratio.pc)5d$(pc)s $(alias)-8s $(kind_50)-4.4s $(name)s

See PyFormat for a description how the formatting options work, and notice that $ is used instead of % here, because
% has a special meaning in INI files. For the same reason, a single % in the final output becomes $(pc)s in the
configuration (pc is a system field that is simply a percent sign).

You can also append one or more format specifiers to a field name, separated by a .. These take the current value and
transform it — in the above example .raw.delta means “take an unformatted time value and then convert it into a
time delta relative to just now.” The option --help-fields lists the available format specifiers.

Then, calling rt2days -q will print something like this:

COMPLETED LEECHTIME IS_O UP/s RATIO% ALIAS KIND NAME
1d 21h ago 10m 2s OPN 0 bytes/s 100% SeedBox rar lab-rats

And with version 0.3.6 installed, you can create a full listing of all the files you have loaded into rTorrent using the
predefined format “files”:

$ rtcontrol \* -ofiles | less
STP 1970-01-01 01:00:00 25.6 MiB Execute My Liberty - The Cursed Way -- Jamendo -
→˓ OGG Vorbis q7 - 2010.07.29 [www.jamendo.com] {Jamendo}

2010-08-21 01:25:27 2.0 MiB | 01 - Midnight (Intro).ogg
...
2010-08-21 01:25:27 48.7 KiB | [cover] Execute My Liberty - The Cursed Way.

→˓jpg
= 9 file(s) [ogg txt]

...

And finally, from version 0.4.1 onwards, you can use a full templating language instead of the simple field lists or
string interpolation described above, more on that in Using Output Templates.

Statistics

Printing Some Statistics to the Terminal

Create a list of all your trackers and how many torrents are loaded for each:

26 Chapter 1. Contents of This Manual

https://pyformat.info/


pyrocore Documentation, Release 0.6.1

rtcontrol -q -o alias -s alias \* | uniq -c

You can easily modify this by using conditions other than *, e.g. show the count of fully seeded downloads using
ratio=+1. Or try the same command with traits instead of alias (version 0.3.7 only).

The total amount of data you have loaded in GiB:

rtcontrol -qosize \* | awk '{ SUM += $1} END { print SUM/1024/1024/1024 }'

The amount uploaded per tracker:

rtcontrol -qo alias,uploaded // \
| awk '{arr[$1]+=$2} END {for (i in arr) {printf "%20s %7.1f GiB\n",i,arr[i]/1024^

→˓3}}' \
| sort -bnk2

Starting with version 0.4.1, you can also request a statistical summary of your numerical output columns, like this:

$ rtcontrol -qo size.sz,uploaded.sz,ratio.pc --summary "a*"
SIZE UPLOADED RATIO

14.5 GiB 9.3 GiB 2592.0 [SUM of 32 item(s)]
462.4 MiB 298.9 MiB 81.0 [AVG of 32 item(s)]

Normalized Histogram of Ratio Distribution

The following will create a normalized histogram of ratio distribution of your loaded torrents. Each bar indicates the
percentage of items in a ratio class (i.e. the first bar shows ratios up to 1).

rtcontrol alias=* -qo ratio -s ratio >/tmp/data \
&& octave -q --persist --eval \

"load /tmp/data; hist(data, $(tail -n1 /tmp/data), 100); print -dpng /
→˓tmp/ratio.png"

You need to have Octave installed, on Debian/Ubuntu all you need is sudo aptitude install octave3.0.

Performing Management Tasks

Fixing Items With an Empty “Base Path”

Sometimes rTorrent loses track of where it stores the data for an item, leading to an empty Base path in the Info
panel. You can try to fix this by selectively rehashing those, with these commands:

rtcontrol path= is_complete=y -V
rtcontrol path= is_complete=y --hash -i

The first command selects the broken items into a rTorrent view, so that you can watch the progress of hashing and the
results afterwards. If all of them are finished, you can then start those that were successfully restored like so:

rtcontrol path=\! done=100 --from-view rtcontrol --start``

(note that the --from-view option needs version 0.3.7)

1.4. User’s Manual 27

http://www.gnu.org/software/octave/


pyrocore Documentation, Release 0.6.1

Deleting Download Items and Their Data

Using the option --cull of version 0.3.10, an item can be deleted including its data. You can do this either manually,
or automatically as a part of Ratio Management. A full example of automatic space management is shown in the
_cron_sweep script, and its sweep_rules include file with customizable rules.

When you call rtcontrol --cull ... from the shell, you will first be presented with the number of items
found and then asked for each of them whether you want to delete it (interactive mode is on by default). Therefor, for
automatic uses in cron, you should also specify the --yes option.

If you define the following command shortcut, you can also delete the current item directly from ncurses (needs version
0.4.1 to work):

method.insert = cull,simple|private,"execute.nothrow=rtcontrol,-q,--detach,--cull,--
→˓yes,\"$cat=hash=,$d.hash=\""

Just select the item you want to annihilate and enter cull= into the command prompt (Ctrl-X). Note that you
already have that command added if you followed the Configuration Guide.

Pruning Partial Downloads

Starting with version 0.3.10, the --purge option (a/k/a --delete-partial) allows you to not only delete the
selected items from the client, but at the same time delete any incomplete files contained in them (i.e. files that are part
of an incomplete chunk).

For technical reasons, rTorrent has to create files that you have deselected from download to save data of chunks that
border selected files, and this option can be a great time saver, especially on large torrents containing hundreds of

28 Chapter 1. Contents of This Manual

https://github.com/pyroscope/pimp-my-box/blob/master/roles/pyroscope-cli/files/bin/_cron_sweep
https://github.com/pyroscope/pimp-my-box/blob/master/roles/pyroscope-cli/files/etc/sweep_rules


pyrocore Documentation, Release 0.6.1

files. So, unless you have filtered out incomplete items by the appropriate conditions, using --purge instead of
--delete is always the better option.

As with --cull, a shortcut command to call this from the curses UI is useful:

method.insert = purge,simple,"execute.nothrow=rtcontrol,-q,--detach,--purge,--yes,\"
→˓$cat=hash=,$d.get_hash=\""

Note that you already have that command added if you followed the Configuration Guide.

Performing Periodic Tasks

Simple Queue Management

This is a queue management one-liner (well, logically one line). Before you run it automatically, add a trailing “-n”
to test it out, e.g. play with the queue size parameter and check out what would be started. Then put it into a script,
crontab that and run it every (few) minute(s).

export rt_max_start=6; rtcontrol -q --start --yes hash=$(echo $( \
rtcontrol -qrs is_active -o is_open,hash is_complete=no is_ignored=no \
| head -n $rt_max_start | grep ^CLS | cut -f2 ) | tr " " ,)

It works by listing all incomplete downloads that heed commands and sorting the already active ones to the top. Then
it looks at the first rt_max_start entries and starts any closed ones.

Note that this means you can exempt items from queue management easily by using the I key in the curses interface.
See rTorrent Queue Manager for a much better solution.

Move on Completion

The following moves completed downloads still physically residing in a work directory (change the realpath filter
when you named your download directory differently), to another directory (note that you can restrict this further, e.g.
to a specific tracker by using “alias=NAME”). You don’t need any multiple watch folders or other prerequisites for
this.

rtcontrol --from-view complete 'realpath=*/work/*' -qo '~/bin/rtmv "$(path)s" ~/
→˓rtorrent/done --cron' | bash

Test it first without the | bash part at the end, to make sure it’ll in fact do what you intended.

Another advantage is that in case you ever wanted to switch clients, or exchange the drive you host the data on, you
can do so easily since all the active downloads still reside at one place in your download directory (in form of a bunch
of symlinks) — even if their data is scattered all over the place in reality.

You can also extend it to create more organized completion structures, e.g. creating a directory tree organized by
month and item type, as follows:

RT_SOCKET=/home/bt/rtorrent/.scgi_local

# Move completed torrents to "done", organized by month and item type (e.g. "2010-09/
→˓tv/avi")

*/15 * * * * test -S $RT_SOCKET && ~/bin/rtcontrol --from-view complete
→˓'realpath=*/work/*' -qo '~/bin/rtmv "$(path)s" ~/rtorrent/done//$(now.iso).7s/
→˓$(traits)s --cron' | bash

1.4. User’s Manual 29



pyrocore Documentation, Release 0.6.1

The above is a fully working crontab example, you just have to adapt the paths to your system. If you want to
create other organizational hierarchies, like “by tracker”, just replace the $(now.iso).7s/$(traits)s part by
$(alias)s. And if you don’t want the file type in there (i.e. just “tv”), use $(traits.pathdir)s to have it
removed.

To get themed trackers specially treated, you can add hints to the [TRAITS_BY_ALIAS] section of the config (see
config.ini.default for examples).

Afterwards, you can always move and rename stuff at will and still continue seeding, by using the rtmv tool in
version 0.3.7 — this will rename the data file or directory at its current location and automatically fix the symlink in
the download directory to point at the new path. Example:

cd ~/rtorrent/done/2010-09/tv/avi
rtmv foo.avi bar.avi

Ratio Management

While rTorrent has a built-in form of ratio management since a few versions, it’s hard to use after-the-fact and also
hard to understand — you need to have different watch directories and complex settings in your .rtorrent.rc to
use that.

It can be much simpler — a basic form of ratio management using rtcontrol looks like this:

rtcontrol is_complete=yes is_open=yes ratio=+1.1 alias=sometracker,othertracker --stop

You will always want to have the is_complete=yes is_open=yes ratio=+1.1 part, which excludes all
torrents that are still downloading, closed or not having the necessary ratio. Another basic filter is is_ignored=no,
which excludes items that have their ignore commands flag set (via the I key) from ratio management.

To that you can add anything you think fits your needs, and also use several commands with different minimum
ratios for different trackers by selecting them using alias or tracker, like in the example above. Assuming you
have your original seeds in a directory named seed and don’t want to ratio-limit them, one thing you might add is
'datapath=!*/seed/*' to prevent them from being stopped. Only your imagination (and the available fields)
are the limit here.

If you then put these commands into a script that runs every few minutes via cron, you have a very flexible form of
ratio management that can be changed on a whim.

Note: For cron use, you’ll want to add the --cron --yes options to any rtcontrol commands. The first
one redirects logging to a special logfile ~/.pyroscope/log/cron.log, and the second positively answers any
prompts that would appear when using --delete or --cull.

To complete your command line, you add the action you want to take on the torrents found, in the above example
--stop; --delete is another possibility, which removes the item from the client, but leaves the data intact. Starting
with version 0.3.10, you can also delete the downloaded data by using the --cull option.

You can also protect items from removal by using activity indicators, specifically the active and last_xfer fields.
The condition active=+10i checks that no peer was connected in the last 10 minutes, while last_xfer=+10i
does the same for the last time data was transferred. Note that data transferred means either upload or download went
over the threshold defined by pyro.last_xfer.min_rate (in bytes/s, with a default of 5000).

30 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

Bandwidth Management

Say you want to have torrents that are already seeded back take a back-seat when other torrents with a ratio less than
100% are active — but when they’re not, all torrents should take full advantage of the available bandwidth. The last
part is not possible with the built-in throttle groups, but here’s a fix that works by setting the maximum rate on the
seed throttle dynamically.

Put this into your .rtorrent.rc:

throttle_up=seed,900

Then save the dynamic seed throttle script into ~/bin/rt_cron_throttle_seed.

Finally, extend your crontab with these lines (crontab -e):

RT_SOCKET=/home/bt/rtorrent/.scgi_local
BW_SEED_MAX=900
BW_SEED_SLOW=200

# Throttle torrents that are seeded 1:1 when there are other active ones

* * * * * test -S $RT_SOCKET && ~/bin/rt_cron_throttle_seed seed $BW_SEED_
→˓MAX $BW_SEED_SLOW --cron

# Put torrents seeded above 1:1 into the seed throttle

*/10 * * * * test -S $RT_SOCKET && rtcontrol ratio=+1.05 is_complete=1
→˓is_ignored=0 throttle=none -q -T seed --yes --cron

The 900 and 200 in the above examples are the bandwidth limits in KiB/s, you need to adapt them to your connection
of course, and all paths need to be changed to fit your system. Each time the throttle rate is changed, a line like the
following will be appended to the file ~/.pyroscope/log/cron.log:

2010-08-30 14:16:01 INFO THROTTLE 'seed' up=200.0 KiB/s [2 prioritized] [__main__.
→˓SeedThrottle]

Automatic Stop of Items Having Problems

This job takes away a lot of manual monitoring work you had to do previously:

HOME=/home/rtorrent
RT_SOCKET=/var/torrent/.scgi_local

# Stops any torrent that isn't known by the tracker anymore,
# or has other authorization problems, or lost its data

* * * * * test -S $RT_SOCKET && sleep 21 && nice ~/bin/_cron_rt_invalid_items --
→˓stop --cron

Just call crontab -e as the rtorrent user and add the above lines. You also need to install the
_cron_rt_invalid_items script into ~/bin.

The prio=-3 in the script’s list of conditions enables you to keep items running in case of errors, by setting their prior-
ity to high, e.g. when only some trackers in a longer list return errors. The is_complete=yes is_ghost=yes
part means you can simply stop torrents by removing their data, it won’t take more than a minute for the related item
to be force-stopped.

1.4.3 Using Output Templates

1.4. User’s Manual 31

https://github.com/pyroscope/pyrocore/blob/master/docs/examples/rt_cron_throttle_seed
https://raw.githubusercontent.com/pyroscope/pimp-my-box/master/roles/pyroscope-cli/files/bin/_cron_rt_invalid_items


pyrocore Documentation, Release 0.6.1

Introduction

One of the output formatting options described in the ‘rtcontrol’ Examples section are Tempita templates. Compared
to the other options, they offer more versatile formatting because you can use conditionals and loops, e.g. coloring the
output based on some value thresholds (see the example below). The reference chapter Tempita Templating Engine
provides a full description of The Tempita Language.

Note that in order for them to be recognized as such, Tempita templates MUST start with two braces {{, use {{#}}
(an empty template comment) if you want to start the output with some literal text.

Using Tempita to format single items

The most common form of using Tempita for formatting a single output item of a rtcontrol result is probably by
defining it in the configuration as a custom format, so it can be simply used by its name.

The colored predefined format is a typical example:

[FORMATS]

colored = {{default ESC = '\x1B'}}{{d.size|sz}} {{d.uploaded|sz}} {{#
}}{{if d.seedtime < 8*7*86400}}{{ESC}}[36m{{d.seedtime|duration}}{{ESC}}[0m{{else}

→˓}{{d.seedtime|duration}}{{endif}}{{#
}}{{if d.ratio < 0.8}}{{ESC}}[1m{{ESC}}[31m{{elif d.ratio < 1.0}}{{ESC}}[36m{

→˓{elif type(d.ratio) is float}}{{ESC}}[32m{{endif}}{{#
}} {{str(pc(d.ratio)).rjust(8)}}{{chr(37)}}{{if type(d.ratio) is float}}{{ESC}}[0m

→˓{{endif}}{{#
}} {{(d.alias or '').ljust(8)}} {{d.name or ''}}

The main reason to use Tempita here are the if conditions that color the output depending on threshold values, for the
ratio and seed time columns. Additionally to what Tempita provides, the global namespace of the template contains
the usual format specifiers (see the output of the --help-fields option), and the current result item as d (think
download item).

If you look at some of the if conditions, you might find them peculiar, especially the {{if type(d.ratio) is
float}} one. This is so that the column headers, which are obviously not the usual float values but strings, are
exempt from any special coloring. Similarly, the {{d.name or ''}} caters for the fact that when you use the
rtcontrol --summary option, fields that could normally never be None suddenly are — because what’s the
average of a string, really?

Notable here is also the use of a named default value ESC, and using template comments {{#}} to escape the line
endings we don’t want to have in the final output, which looks like this:

32 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

Using Tempita for full output control

If you use the --output-template option of rtcontrol, flow control of presenting the query result is passed
fully to a Tempita template. That means that in addition to iterating over the query result, you can also show any value
available via the rTorrent XMLRPC connection, since the proxy object that allows access to the client is passed to the
template.

This example shows the output of such a template that resembles the rtorstat output:

To generate a similar result with your installation, follow these steps after updating it:

1. Call pyroadmin --create-config to copy the builtin rtorstat.html template to your configura-
tion.

2. Call rtcontrol -qO rtorstat.html done=-100 OR xfer=+0 -sdone >/var/www/cron/
rtorrent.html to create a HTML page.

3. Open that page in your browser.

You can add the command from step #2 as a cronjob and always have a current status display; instead of copying to
the local web server space, you could also put the output into your Dropbox folder to have a status display on your
mobile gear.

The namespace of these templates is populated with the following objects:

• version = the version of PyroScope

• proxy = the client proxy (you can call any XMLRPC method on that)

• view = the view that was queried

• query = the query conditions

• matches = the query result (a list of RtorrentItem objects)

1.4. User’s Manual 33

rtorstat.html
http://packages.python.org/pyrocore/apidocs/pyrocore.torrent.engine.TorrentView-class.html
http://packages.python.org/pyrocore/apidocs/pyrocore.torrent.rtorrent.RtorrentItem-class.html


pyrocore Documentation, Release 0.6.1

Running a rtorstat-like template as a cgi-bin

To get the output of the above example template on-demand, which likely puts less stress on the system and also gives
you current information, you can add a cgi-bin wrapper to your webserver. We assume a Debian or Ubuntu Apache
standard installation here, and put the cgi-bin into the file /usr/lib/cgi-bin/rtorstat with the following
content:

#! /bin/bash
echo "Content-Type: text/html; charset=UTF-8"
echo

export HOME=/home/bt
$HOME/bin/rtcontrol -qO rtorstat.html done=-100 OR xfer=+0 -sdone

This will only work if permissions are given to the webserver user (normally www-data) to access the configuration
files belonging to the bt user. In case you use a scgi_local connection (i.e. a UNIX domain socket), this also
applies the the XMLRPC socket file.

That can be done by making all things group-readable, and add www-data to the bt group. Also, the socket file must
be group-writeable when you use one (TCP sockets are available to all users on the machine anyway).

Finally, you can put a <meta http-equiv="refresh" content="60"> into the template to automatically
refresh the page every minute.

Adding a rTorrent status display to conky

You can add a status display to the well-known conky system monitor tool by using the conky rtorstat template
together with a matching conkyrc:

To display the example, run these commands, assuming you have conky already installed:

1. pyroadmin --create-config

2. conky -c ~/.pyroscope/templates/conky/conkyrc

34 Chapter 1. Contents of This Manual

https://github.com/pyroscope/pyrocore/blob/master/src/pyrocore/data/config/templates/conky/rtorstat.txt
https://github.com/pyroscope/pyrocore/blob/master/src/pyrocore/data/config/templates/conky/conkyrc


pyrocore Documentation, Release 0.6.1

If you change the execpi in the conky configuration to call a remotely installed rtcontrol via ssh, you can also
beam the status of a remote rTorrent instance onto your desktop. It is advisable to increase the poll intervall to at least
15 seconds in that case. Note that this setup means you have the .conkyrc on your local host, but the template used
is on the remote host!

...
${execp ssh -o ConnectTimeout=15 -o SetupTimeOut=15 -T REMOTEHOST "~/bin/rtcontrol -
→˓qO conky/rtorstat.txt --from-view incomplete is_open=yes is_ignored=no"}

Change REMOTEHOST to the name of the remote host, and make sure you have public key login enabled.

Listing all orphans in your download directory

This example shows how easily you can use templates to extract some information out of the client that is otherwise
not directly available. The orphans.txt template lists all paths in the download directory not loaded into the client, and
can be called like this:

rtcontrol -qO orphans.txt.default //

To check a specific directory, set the dir config value – in this case the current working directory is checked:

rtcontrol -qO orphans.txt.default // -Ddir=$PWD

Finally, pass found paths to du to get some statistics on the space used up by orphans:

rtcontrol -qO orphans.txt.default // | xargs -d$'\n' -- du -sch

Use mv -n -t ‹directory› instead of the du command to move orphans away to a different directory.

1.4.4 Standard Configuration Explained

Introduction

This section provides details on the use of the features that are added by the standard rTorrent configuration include.
Many of them work on a vanilla release of rTorrent – but see the note below.

See also the full list of additional features in the rTorrent-PS documentation. There’s also some features that are
located in the pimp-my-box configuration includes, which means in order to get them you either need to use that way
of setup, or follow the Manual Turn-Key System Setup instructions in the rTorrent-PS manual (specifically the rTorrent
Configuration part).

If you think this is too complicated and scattered all over the place, the pimp-my-box project packages all this into a
nicely integrated experience. Just sayin’.

If you don’t want to use Ansible, then the make-rtorrent-config.sh script gives you the same setup with a bit more
manual work involved.

Important: Any feature that mentions some form of custom key binding does require that you run a build of rTorrent-
PS!

1.4. User’s Manual 35

https://github.com/pyroscope/pyrocore/blob/master/src/pyrocore/data/config/templates/orphans.txt
https://rtorrent-ps.readthedocs.io/en/latest/manual.html#features-std-cfg
https://github.com/pyroscope/pimp-my-box/tree/master/roles/rtorrent-ps/templates/rtorrent/rtorrent.d
https://rtorrent-ps.readthedocs.io/en/latest/install.html#debianinstallfromsource
https://rtorrent-ps.readthedocs.io/en/latest/install.html#make-rtorrent-config
https://rtorrent-ps.readthedocs.io/en/latest/install.html#make-rtorrent-config
https://pimp-my-box.readthedocs.io/
https://rtorrent-ps.readthedocs.io/en/latest/install.html#make-rtorrent-config
https://github.com/pyroscope/rtorrent-ps
https://github.com/pyroscope/rtorrent-ps


pyrocore Documentation, Release 0.6.1

Miscellaneous Features

In this section, some smaller added features are mentioned – quite often, their effects are not directly visible in the
user interface. When filenames are mentioned, they can be found in ~/.pyroscope/rtorrent.d (look at the
*.default files, those are up-to-date).

auto-scrape.rc regularly updates scrape information for all torrents, even stopped ones. It makes the peer counter
columns show actually useful and reasonably up-to-date information.

commands.rc adds convenience commands for the Ctrl-X prompt, like s= and t=.

logging.rc enables feedback on a few major events like completion, announces day changes, and warns when the
~/NOCRON flag file exists.

quick-help.rc contains the help information shown when you press F2 in rTorrent-PS.

timestamps.rc records the time at which various events happen into custom fields. This is the basis for sorting
views like indemand or last_xfer.

Additional Views

Custom Views: Key Bindings

Here’s an overview of additonal views and view customizations that are part of the standard configuration.

1. The : key shows the tagged view, more on that one below.

2. The t key is bound to a trackers view that shows all items sorted by tracker and then by name.

3. The ! key is bound to a messages view, listing all items that currently have a non-empty message, sorted in
order of the message text.

4. The ^ key is bound to the rtcontrol search result view, so you can easily return to your last search.

5. The ? key is bound to the indemand view, which sorts all open items by their activity (last time a peer was
connected), with the most recently active on top.

6. The % key is bound to the ratio view, which sorts all open items by their ratio (descending) – equal ratios sort
by uploaded data.

7. The ° key is bound to the uploaded view, which sorts all open items by their total upload amount (descending).

8. The " key is bound to the datasize view, which sorts all open items by the size of their content data (de-
scending).

9. The ¬ key (AltGr+^ on some keyboards) is bound to the last_xfer view, which sorts all items by their
last_xfer + active timestamps, or else event times.

For the uploaded and ratio view, there’s a tail of items with zero values. That is sorted by completed / loaded /
downloaded event timestamps, with the first non-zero time used.

If certain key bindings are not convenient or even accessible for you (say ° and ¬), define your own in addition in
_rtlocal.rc or a similar customization file.

# Bind last_xfer / uploaded views to F5 / F6
pyro.bind_key = my_last_xfer_view, 0415, \

"view.sort = last_xfer ; ui.current_view.set = last_xfer"
pyro.bind_key = my_uploaded_view, 0416, \

"view.sort = uploaded ; ui.current_view.set = uploaded"

The Extended Canvas Explained section in the rTorrent-PS manual has a list of columns in those views, and what they
mean.

36 Chapter 1. Contents of This Manual

https://rtorrent-ps.readthedocs.io/en/latest/manual.html#extended-canvas


pyrocore Documentation, Release 0.6.1

The tagged View

The . key toggles the membership in the tagged view for the item in focus, : shows the tagged view, and T clears
that view (i.e. removes the tagged state on all items). This can be very useful to manually select a few items and then
run rtcontrol on them, or alternatively use --to-view tagged to populate the tagged view, then deselect
some items interactively with the . key, and finally mass-control the rest.

Examples using the tagged view

• Moving All Data for Selected Items to a New Location

• Tag Episodes in rT-PS, Then Delete Their Whole Season

Modified active View

The active view is changed to include all incomplete items regardless of whether they have any traffic, and then
groups the list into complete, incomplete, and queued items, in that order. Within each group, they’re sorted by
download and then upload speed.

Hint: This feature is added by views.rc in the pimp-my-box configuration includes.

Category Views

The < and > keys rotate through all added category views (pyro.category.add=‹name›), with filtering based
on the ruTorrent label (custom_1=‹name›).

| re-applies the category filter and thus updates the current category view.

See Adding Category Views to the rTorrent UI for more details.

Color Themes

The ~ key rotates through all available color themes, or a user-selected subset of them.

Here are screen shots of some of the default schemes – from left to right: Default (256 xterm colors), Happy Pastel,
Solarized Blue, and Solarized Yellow.

1.4. User’s Manual 37

https://github.com/pyroscope/pimp-my-box/tree/master/roles/rtorrent-ps/templates/rtorrent/rtorrent.d


pyrocore Documentation, Release 0.6.1

What they actually look like depends on the color palette of your terminal, so adapt the examples to your liking and
terminal setup.

Read more on the configuration of color schemes and the necessary setup of rTorrent-PS in its Color Scheme Con-
figuration section of the manual. It explains how to create new files in the ~/.pyroscope/color-schemes/
directory.

pyrocore provides the commands to select your favourites amongst the different schemes stored there, and then rotate
through the selection using ~.

• (De-)select a theme: python-pyrocore -m pyrocore.ui.theming -t ‹name(s)›

• Select all themes: python-pyrocore -m pyrocore.ui.theming -a

• List all themes: python-pyrocore -m pyrocore.ui.theming -l

• Rotate to next: python-pyrocore -m pyrocore.ui.theming -qn

• Print current path: python-pyrocore -m pyrocore.ui.theming -qc

Only the first three are the ones you want to call directly, the last two are used internally to implement the rotation.

Here is an example for selecting the themes which are shown above as screen shots:

python-pyrocore -m pyrocore.ui.theming -a -t \
default-256,solarized-blue,solarized-yellow,happy-pastel -l

Call this command on a shell prompt as the user you installed pyrocore for. Selection changes are in effect immediately,
you don’t need to restart rTorrent.

Watches With Dynamic Start

The new d.watch.startable and load.category commands allow you to easily change whether an item
loaded by a watch is started immediately (the default), or not.

This is especially useful when combined with automatic downloaders like FlexGet or autodl-irssi. Usually, newly
added items are started immediately – that is the whole point of automation.

In some cases though, you might want to disable that and delay downloading until later. Testing configuration changes
is a typical reason, because an innocent mistake could swamp you with lots of downloads. If they stay dormant at first,
that is easily fixed.

Just call rtxmlrpc -i cfg.watch.start.set=0 and you get exactly that, without a rTorrent restart. If ev-
erything looks OK, re-enable instant downloading by changing the 0 to 1 again. Calling rtcontrol --from
stopped done=0 custom_watch_start=1 --start will start anything added in the meantime.

To get such a watch directory, add a schedule like this to your configuration:

schedule2 = watch_dynamic, 10, 10, \
((load.verbose, (cat, (cfg.watch), "dynamic/*.torrent"), "d.watch.startable="))

It is important to either use load.verbose or load.normal so the item stays idle, and then add the post-load
d.watch.startable command to mark this item as eligible to be started.

The load.category command (added by rtorrent.d/categories.rc) already integrates this behaviour. It can be used
like shown in this example:

schedule2 = watch_hdtv, 10, 10, ((load.category, hdtv))

See Adding Category Views to the rTorrent UI for more on categories.

38 Chapter 1. Contents of This Manual

https://rtorrent-ps.readthedocs.io/en/latest/customize.html#color-schemes
https://rtorrent-ps.readthedocs.io/en/latest/customize.html#color-schemes
https://flexget.com/
https://github.com/autodl-community/autodl-irssi
https://github.com/pyroscope/pyrocore/blob/master/src/pyrocore/data/config/rtorrent.d/categories.rc


pyrocore Documentation, Release 0.6.1

Technical Details

Since you cannot call d.start as a post-load command (the item is not fully initialized yet), the conditional start
has to happen after the load is finished.

Therefor, a event.download.inserted_new handler checks for the custom attribute watch_start set
by d.watch.startable (thus only acting on items loaded by specifically marked watch schedules), and then
continues to call d.start only if the cfg.watch.start value is currently set to 1.

See the rtorrent.d/00-default.rc file for the full command definitions.

1.5 Tips & How-Tos

1.5.1 Flush ALL Session Data to Disk

The session.save command saves the changing parts of the session status, that is the *.torrent.
libtorrent_resume and *.torrent.rtorrent files. The copy of the original *.torrent metafile never
changes and is thus left untouched.

If you want to flush all the session data, call rtxmlrpc as follows:

rtxmlrpc -q d.multicall2 '' default d.save_full_session=

Use it to recover from accidentally deleting the session directory – the client still needs to be running though, and you
have to recreate the missing session directory beforehand.

1.5.2 Adding Category Views to the rTorrent UI

Version 0.5.1 enables you to easily add category views, that also play nice with ruTorrent labels in custom_1.
Since this relies on key bindings, it only works using rTorrent-PS.

First, you need to define your category names and watches, like in this example:

cd ~/rtorrent
~/.local/pyroscope/src/scripts/add-categories.sh books hdtv movies music

It is recommended to stick to alphanumeric category names, and use _ for word separation.

The script adds the given categories to the rtorrent.d/categories.rc file, using a pyro.category.add
call and defining a watch schedule for each one. The watches put loaded items into the related category, and they
expect metafiles in ~/rtorrent/watch/‹category-name›.

Given the categories in the call above, it looks like this:

# Category Definitions for:
# books hdtv movies music

# "Other" category for empty labels
pyro.category.add = (cat,)

pyro.category.add = books
schedule2 = category_watch_01, 11, 10, ((load.category.normal, books))

(continues on next page)

1.5. Tips & How-Tos 39

https://github.com/pyroscope/pyrocore/blob/master/src/pyrocore/data/config/rtorrent.d/00-default.rc
https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-session-save


pyrocore Documentation, Release 0.6.1

(continued from previous page)

pyro.category.add = hdtv
schedule2 = category_watch_02, 12, 10, ((load.category.normal, hdtv))

pyro.category.add = movies
schedule2 = category_watch_03, 13, 10, ((load.category.normal, movies))

pyro.category.add = music
schedule2 = category_watch_04, 14, 10, ((load.category.normal, music))

To remove a category, just edit it out of the rtorrent.d/categories.rc file, and then call the
add-categories.sh script without any arguments to clean things up.

On an existing installation, to auto-create categories for all the ruTorrent labels you already have (and that also fit the
alphanumeric constraint), call this:

cd ~/rtorrent
~/.local/pyroscope/src/scripts/add-categories.sh \

$(rtcontrol custom_1=\! -qo custom_1 | egrep '^[_a-zA-Z0-9]+$' | sort -u)

Note: After these configuration changes, don’t forget to restart rTorrent.

In the rTorrent-PS user interface, you can now work with the following keys:

• Rotate through category views using < and >.

• The | key updates the current category view, i.e. filters for new or removed items.

The sort order of these views is the same as main, and if you switch to any other view and back to categories, you
always start at the first category view (from the sorted list of category names).

For details on the commands related to categories, see their descriptionm in the rTorrent command reference:

• d.category.set
• load.category
• load.category.normal
• load.category.start
• pyro.category.separated
• pyro.category.add
• pyro.category.list
• cfg.watch.start

1.5.3 Dumping Items as a JSON Array

If you want to access rTorrent item data in machine readable form via rtcontrol, you can use its --json option
and feed the output into another script parsing the JSON data for further processing.

Here’s an example:

$ rtcontrol --json -qo name,is_ghost,directory,fno foo
[

{
"directory": "/var/torrent/load/foo",
"fno": 1,
"is_ghost": false,
"name": "foo"

(continues on next page)

40 Chapter 1. Contents of This Manual

https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-d-category-set
https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-load-category
https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-load-category-normal
https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-load-category-start
https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-pyro-category-separated
https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-pyro-category-add
https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-pyro-category-list
https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-cfg-watch-start


pyrocore Documentation, Release 0.6.1

(continued from previous page)

}
]

Note: When using --json, the list of fields given with -o must consist only of plain field names, i.e. format
specifiers aren’t supported. If you need derived values, the process parsing the output needs to calculate them.

1.5.4 Working With Several rTorrent Instances

Switching to the ‘rtorrent.rc’ of an Instance

Both rtcontrol and rtxmlrpc read the existing rTorrent configuration to extract some settings, so that you don’t
need to maintain them twice – most importantly the details of the XMLRPC connection. That is why config.ini
has the rtorrent_rc setting, and changing that is the key to select a different instance you have running.

Just pass the option -D rtorrent_rc=PATH_TO/rtorrent.rc to either rtcontrol or rtxmlrpc, to read
the configuration of another instance than the default one. For convenient use on the command line, you can add
shell aliases to you profile, or globally change the default for the current shell by setting the PYRO_CONFIG_DIR
environment variable.

Alternatively, you can also set the scgi_url value directly, like in this example:

rtxmlrpc -D scgi_url=scgi:///var/run/rtorrent/instance01 session.name

For convenient use on the command line, you can give those connection URLs alias names in the [CONNECTIONS]
section of the configuration, like in this example:

[CONNECTIONS]

local = scgi://$HOME/rtorrent/.scgi_local
box = scgi+ssh://rtorrent@mybox/var/torrent/.scgi_local

You can now use these aliases with rtcontrol, rtxmlrpc and pyroadmin, by prefixing one of them with a @
character, anywhere on the command line:

rtxmlrpc @local session.name

Customizing the Default Configuration per Instance

Since version 0.5.1, the extensions to the rTorrent configuration are loaded via the commands in ~/.pyroscope/
rtorrent-pyro.rc.default, importing snippets found in the ~/.pyroscope/rtorrent.d/ directory.
The commands.rc.default file located there contains commands that use rtcontrol behind the scenes.

As shown in the previous section, these commands must use -D to load the right configuration. Instead of switching
to importing the *.rc variants wholesale, with all the work that comes with that after updates, you can simply ignore
just the commands.rc.default file, and replace it with an adapted copy in your main configuration file.

So, in summary, to customize a ~/rtorrent_1 instance:

echo >>~/.pyroscope/rtorrent.d/.rcignore "commands.rc.default"
sed -r -e 's:--detach:--detach,-D,"rtorrent_rc=~/rtorrent_1/rtorrent.rc":' \

~/.pyroscope/rtorrent.d/commands.rc.default \
>>~/rtorrent_1/rtorrent.rc

1.5. Tips & How-Tos 41



pyrocore Documentation, Release 0.6.1

Now commands like s= are defined in ~/rtorrent_1/rtorrent.rc, and commands.rc.default is not
imported, so no duplicate definition errors occur.

Tip: Starting with version 0.6.1, you can use the PYRO_CONFIG_DIR environment variable instead, by ex-
porting it in your instance’s start script or systemd unit. This allows you to re-use the same ~/.pyroscope/
rtorrent-pyro.rc.default include in the main rtorrent.rc of your instance, and work with an un-
changed ~/.pyroscope/rtorrent.d/ directory.

This variable, the cfg.basedir value, and its current directory then allow the started rtorrent process to find the
right files and directories.

1.5.5 Moving All Data for Selected Items to a New Location

This shows how to move the data of all items for a specific tracker (identified by the alias TRK) from ~/rtorrent/
data/ to ~/rtorrent/data/tracker/. Note that you can do that in ruTorrent too, but with too many items,
or items too big, the results vary (data is not or only partially moved).

This sequence of commands will stop the selected items, move their data, adapt rTorrent’s metadata (session state),
and finally starts everything again, followed by removing the items from the tagged view. The order matters and
cannot be changed. Also, lower the global download throttle to a few KiB/s, as a safety net in case you do something
wrong – otherwise rTorrent might start to redownload all those items at your line’s top speed.

mkdir -p ~/rtorrent/data/tracker
rtcontrol --to-view tagged alias=TRK realpath=$HOME/rtorrent/data
rtcontrol --from-view tagged // --stop
rtcontrol --from-view tagged // --spawn "mv {{item.path}} $HOME/rtorrent/data/tracker"
rtcontrol --from-view tagged // --exec "directory.set=$HOME/rtorrent/data/tracker" --
→˓yes --flush
rtcontrol --from-view tagged // --start
rtcontrol -M tagged --alter=remove //

By changing the first rtcontrol command that populates the tagged view, you can change this to move data for
any criteria you can think of — within the limits of rtcontrol Filter Conditions. Also, if you run rTorrent-PS, you
can manually remove items from the tagged view by using the . key, before applying the rest of the commands.

For learning how to calculate the new path based on the old one, read Relocating Download Data. In that case, you
need to use the same templating expression in both the target of the mv command, and the directory.set one.

Also see the Advanced ‘rtcontrol’ section that explains the --spawn and --exec options in more depth.

Note: The tagged view is used here solely for the purpose of allowing manual manipulation of the search result
after step 1, when using rTorrent-PS. It is not related to the tagged field in any way.

They’re just different ways to tag items, one of them visually in the rTorrent-PS UI.

1.5.6 Host Migration of Data & State

If you want to move items and their data to another host, there are endless ways to do that, with different grades of
difficulty and how much state is carried over.

The way described here allows you to move items per directory they are stored in, which fits nicely with typical
hierarchies created by completion moving.

42 Chapter 1. Contents of This Manual

https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-cfg-basedir


pyrocore Documentation, Release 0.6.1

In consequence, you can split the existing data if you need to, or just move a subset. If you vary the commands, you
can adapt this to your needs, e.g. move all items at once.

Important: You need git head or v0.6.1 for this.

This first command lists all the unique storage paths you have, and how many items they hold:

# List all the unique storage paths containing download items
rtcontrol path='!' -qo realpath.pathdir | sort | uniq -c \

| awk -F' ' '{ print $0; sum += $1} END { printf "%7d ITEMS TOTAL\n", sum; }'

Always call that initially to check if the output makes sense to you – otherwise you likely have some inconsistencies
in your setup that need to be fixed first.

The next series of commands creates a hidden .metadata folder in each storage path, and copies the session
metafiles and other state of contained items into that. The last command lists the results.

alias foreachpath='rtcontrol path=! -qo realpath.pathdir -0 | sort -uz | xargs -0I#'

# Create ".metadata" hidden folders in those directories
foreachpath mkdir -p "#/.metadata"

# Save state and all metafiles per path
foreachpath rm -f "#/.metadata/_all-items"
foreachpath rtcontrol realpath='/^#(/[^/]+|)$/' \

--call 'echo "{{item.hash}}:{{item.name}}:{{item.realpath | pathbase}}" \
>>"#/.metadata/_all-items"'

for i in '' .rtorrent .libtorrent_resume; do
echo "~~~ session '*.torrent$i'"
foreachpath rtcontrol realpath='/^#(/[^/]+|)$/' \

--spawn 'cp {{item.sessionfile}}'$i' "#/.metadata/{{item.name}}-{{item.hash}}.
→˓torrent'$i'"'
done

# List the saved metadata files
foreachpath find "#/.metadata" | sort | less

To use the generated _all-items files, this is how you can read them:

while IFS=':' read h n f; do
echo -e "$h\\n name = $n\\n file = $f"

done <.metadata/_all-items

While the name and the filename are usually identical, they can differ if you used d.directory_base.set on an item.

The best way to migrate the data is using rsync, especially since it allows incremental updates, and setting bandwith
limits. Change OTHERHOST to the domain name or ~/.ssh/config alias of the target host.

This command replicates all storage paths to the remote host, keeping the file system paths the same (that is not
required though, prefix or replace the rightmost # at will).

foreachpath rsync -avhP --stats --times --bwlimit=42000 "#/" "OTHERHOST:#"

Add echo before rsync to just list the commands, e.g. to only sync one of the directories.

Tip: Splitting items into several rTorrent instances

1.5. Tips & How-Tos 43

https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html#term-d-directory-base-set


pyrocore Documentation, Release 0.6.1

If your leave out the rsync parts and replace them with moving data to different instance’s data directories, you can
nicely split up large volumes of data by the groups your completion moving or storage path presets created anyway.

Loading the items then does not happen on a target host, but into the target instances. See Switching to the ‘rtorrent.rc’
of an Instance on how to select the targets when you run them under just one user account.

TODO load items into target rTorrent instance

Finally, if everyhting looks OK on the target, you might remove the source data:

rm -f /tmp/rt-cleanup-$USER.sh
foreachpath echo rm -rf \""#/"\" >>/tmp/rt-cleanup-$USER.sh
foreachpath rtcontrol realpath='/^#(/[^/]+|)$/' --cull
bash -x /tmp/rt-cleanup-$USER.sh # optionally delete left-overs

1.5.7 Tag Episodes in rT-PS, Then Delete Their Whole Season

The command below allows you to delete all items that belong to the same season of a TV series, where single episodes
were tagged as a stand-in for their season. The tagging can be done interactively in rTorrent-PS, using the . key.

rtcontrol --from tagged -s* -qoname "/\\.S[0-9][0-9]E[0-9][0-9]\\./" \
| sed -re 's/(.+\.[sS]..[eE])..\..+/\1/' | uniq | \
| xargs -I# -d$'\n' rtcontrol '/^#/' loaded=+2w -A dupes- --cull --yes

The culling command call also protects any item younger than 2 weeks, and excludes any dupes that were not fully
caught by the selection. Replace the --cull --yes with -V to preview what would be deleted.

1.5.8 Using Tags or Flag Files to Control Item Processing

If you want to perform some actions on download items exactly once, you can use tags or flag files to mark them as
handled. The basic pattern works like this:

#! /usr/bin/env bash
guard="handled"
...

rtcontrol --from-view complete -qohash --anneal unique tagged=\!$guard | \
while read hash; do

...

# Mark item as handled
rtcontrol -q --from-view $hash // --tag "$guard" --flush --yes --cron

done

The --from-view $hash // is an efficient way to select a specific item by hash, in case you wondered.
hash=‹infohash› in contrast loads all items, then filters out just one. And --anneal unique prevents items
duplicated by name to be processed several times (by ignoring the duplicates).

A variant of this is to use a flag file in the download’s directory – such a file can be created and checked by simply
poking the file system, which can have advantages in some situations. To check for the existance of that file, add a
custom field to your config.py as follows:

def is_synced(obj):
"Check for .synced file."

(continues on next page)

44 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

pathname = obj.path
if pathname and os.path.isdir(pathname):

return os.path.exists(os.path.join(pathname, '.synced'))
else:

return False if pathname else None

yield engine.DynamicField(engine.untyped, "is_synced", "does download have a .synced
→˓flag file?",

matcher=matching.BoolFilter, accessor=is_synced,
formatter=lambda val: "SYNC" if val else "????" if val is None else "!SYN")

The condition is_synced=no is then used instead of the tagged one in the bash snippet above, and setting the
flag is a simple touch. Add a rsync call to the while loop in the example and you have a cron job that can be used
to transfer completed items to another host exactly once.

Note that the flag file code as presented only works for multi-file items, since a data directory is assumed – supporting
single-file items is left as an exercise for the reader. See Defining Custom Fields for more details regarding custom
fields.

1.5.9 Metafile Creation with info.source from Configuration

Say you want to add the info.source field for various trackers to new torrents, during their creation in a script.

If the script takes the alias of the target tracker as an input, this how-to shows a way to fetch the right source field from
configuration (config.ini). As a result, the script is portable between different setups and users.

The first step is to define a command for each affected tracker that adds its custom data (you could set more than just
the source field here). We do so in a new section named COMMANDS.

[COMMANDS]
custom_meta_tec = chtor -q --set info.source='tracker.example.com'

[ANNOUNCE]
TEC = https://tracker.example.com/announce.php

https://tracker.example.com/announce.php?
→˓passkey=12300000000000000000000000000456

You can immediately check your settings using pyroadmin:

$ pyroadmin -qo commands
{'custom_meta_tec': "chtor -q --set info.source='tracker.example.com'"}
$ pyroadmin -qo commands.custom_meta_tec
chtor -q --set info.source='tracker.example.com'

As you can see, we’re now able to look up the metafile manipulation command via the tracker alias. That is used in
the following shell snippet to call this command on the created metafile.

eval $(pyroadmin -qo commands.custom_meta_$tracker=:) "$metafile"

Since we build the command dynamically, the bash eval builtin is used. The nested pyroadmin call does the
lookup of the first command part, and returns : in case there is no command set for a specific tracker (that is what the
=: is for). : is a builtin command documented as do nothing, successfully – i.e. if we have no command configured,
the whole eval construct is a no-op.

Here’s a trace of what happens for known and unknown aliases:

1.5. Tips & How-Tos 45



pyrocore Documentation, Release 0.6.1

$ ( tracker=tec; metafile=foo.torrent; set -x ; \
eval $(pyroadmin -qo commands.custom_meta_$tracker=:) $metafile )

++ pyroadmin -qo commands.custom_meta_tec=:
+ eval chtor -q --set 'info.source='\''tracker.example.com'\''' foo.torrent
++ chtor -q --set info.source=tracker.example.com foo.torrent
$ ( tracker=unknown; metafile=foo.torrent; set -x ; \

eval $(pyroadmin -qo commands.custom_meta_$tracker=:) $metafile )
++ pyroadmin -qo commands.custom_meta_unknown=:
+ eval : foo.torrent
++ : foo.torrent

1.5.10 Moving All Untied Metafiles Out of a Watch Tree

Sometimes when rTorrent starts, you see the following message, possibly repeated a lot:

Could not create download: Info hash already used by another torrent.

That is caused by metafiles with the same infohash but from different sources (in different files), that are somehow left
over in a watch directory. A typical variant is when a watch file clashes with a previously untied item now loaded via
the session.

To fix it for good, you can check all metafiles found in a watch tree if they’re still tied to an item in rTorrent, or else
move them away, like this:

( command cd "/var/torrent/watch" && find . -type f -name "*.torrent" | \
while read metafile; do

rtcontrol -qo- metafile='*/'$(tr -c '\n\-._/a-zA-Z0-9' '*' <<<"${metafile#*/}");
→˓RC=$?

if test $RC -eq 44; then
target="/var/torrent/backups/untied/$(dirname "$metafile")"
echo -e "\nMoving '$metafile'..."
mkdir -p "$target"
mv -n "$metafile" "$target"
continue

elif test $RC -ne 0; then
break

fi
echo -n '.'

done )

The loop is not optimized for speed, but then you don’t need to call this very often.

On a related note, to list all the metafiles that an item is still tied to but that don’t exist anymore, use this command:

rtcontrol -q 'metafile=!' --call \
'test -f "{{ item.metafile }}" || echo "{{ item.metafile }}"'

To make the untied state visible in the client, call this:

rtcontrol -q 'metafile=!' --call \
'test -f "{{ item.metafile }}" || rtxmlrpc -q d.delete_tied "{{ item.hash }}"'

1.5.11 Safely Remove One Tracker’s Items

The following uses the --alter option of rtcontrol v0.6.1 to select and then remove all items of a specific
tracker (named DEAD here), but only when there are no open duplicates of those items, i.e. it excludes any seeds active

46 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

on other trackers.

tracker=DEAD
rtcontrol alias=$tracker --stop -o-
rtcontrol alias=$tracker -A dupes+ -V
rtcontrol views=rtcontrol is_open=yes -A dupes+ -V --alter remove
rtcontrol --from rtcontrol // --cull --yes
rtcontrol alias=$tracker --delete --yes

After stopping all items, the second rtcontrol command selects the primary target set of items to delete – if there
were no dupes, directly adding -cull instead of -V to that command would do the job. This simple way would
remove the data of actively seeding duplicates though, making them non-viable – and that is what we want to avoid.

So the second command removes active seeds from the first result that was stored in the rtcontrol view. For that,
we select the active items in the initial result, add any dupes of those, and then take out that subset using --alter
remove. Note that views=rtcontrol is used instead of --from rtcontrol, because otherwise --anneal
doesn’t work correctly (see the warning at Annealing Results for details).

Now, the reduced result set is culled, leaving the active dupes and their data untouched. Finally, left-overs from the
target tracker are just deleted.

More Choices to Alter a View

The other choice for --alter is append, which can be used to incrementally assemble filter results into a view.
While you can also combine filters using OR, this way helps in some situations where that is not possible – especially
when using --anneal or --select, options that apply to all results within one command call.

1.6 Advanced Features

Note: Using these features requires some knowledge in the area Linux, Bash, and Python beyond a novice level, but
they enable you to customize your setup even further and handle very specific use-cases.

1.6.1 Advanced ‘rtcontrol’

Executing OS commands

The --call and --spawn options can be used to call an OS level command and feed it with data from the selected
items. The argument to both options is a template, i.e. you can have things like {{item.hash}} in them.

When using --call, the command is passed to the shell for parsing – with obvious implications regarding the quoting
of arguments, thus --call only makes sense if you need I/O redirection or similar shell features.

In contrast, the --spawn option splits its argument list according to shell rules before expanding the template place-
holders, and then calls the resulting sequence of command name and arguments directly. Consider --spawn 'echo
"name: {{item.name}}"' vs. --spawn 'echo name: {{item.name}}' – the first form passes one
argument to /bin/echo, the second form two arguments. Note that in both cases, spaces or shell meta characters
contained in the item name are of no relevance, since the argument list is split according to the template, not its
expanded value.

To list all the fields available in the first five items, try this command:

1.6. Advanced Features 47



pyrocore Documentation, Release 0.6.1

rtcontrol // -/5 --spawn "echo -e '\\n'{{item}}" | sed -re 's/, /,\n /g'

Unlike --call, where you can use shell syntax to call several commands, --spawn can be passed several times for
executing a sequence of commands. If any called command fails, the rtcontrol call is aborted with an error.

Copy Session Metafiles by Category

Here’s a practical example for using --spawn, it copies all your loaded metafiles from the session directory into a
folder structure categorized by the ruTorrent label. Unlabelled items go to the _NOLABEL folder.

target="/tmp/metafiles"
rm -rf "$target"
rtcontrol // \

--spawn "mkdir -p \"$target/"'{{item.fetch(1) or \"_NOLABEL\"}}"' \
--spawn 'cp {{item.sessionfile}} "'"$target"'/{{item.fetch(1) or \"_NOLABEL\"}}/{

→˓{item.name}}-{{item.hash[:7]}}.torrent"'

The copied metafiles themselves are renamed to the contained name of the item’s data, plus a small part of the infohash
to make these names unique.

Replace the item.fetch(1) by item.‹fieldname› to categorize by other values, e.g. item.alias for ‘by
tracker’.

Executing XMLRPC commands

If you want to apply some custom XMLRPC commands against a set of download items, the --exec option of
rtcontrol allows you to do that. For global commands not referring to specific items, see the next section about
the rtxmlrpc tool. Read through the following examples to understand how --exec works, features are explained
as they are used there. Also make sure you understand basic things like Using Output Templates beforehand, it’s
assumed here that you do.

Examples for using --exec

• Repairing Stuck Items

• Manually Triggering Events

• Relocating Download Data

• Making Shared Data Paths Unique

• Changing Announce URLs in Bulk

• Dumping XMLRPC Results as JSON

Note: Previously, the common way to handle use-cases covered by --exec was to pipe rtxmlrpc commands
generated via templating into bash. Don’t do that anymore, it’s quite inferior to using --exec.

Repairing Stuck Items

Let’s start with an easy example of using --exec, where no templating is needed:

48 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

rtcontrol --exec 'stop= ; close= ; f.multicall=,f.set_create_queued=0,f.set_resize_
→˓queued=0 ; check_hash=' \

--from stopped // -/1

This command simulates pressing ^K^E^R in the curses UI (which cleans the state of stuck / damaged items), and as
written above only affects the first stopped item.

Use different filter arguments after --exec to select other items. Afterwards, use --start to start these items
again.

Manually Triggering Events

Since rTorrent events are merely multi-call commands, you can trigger them manually by calling them on selected
items. This calls event.download.finished (again) on complete items loaded in the last 10 minutes:

rtcontrol --exec ":event.download.finished=" loaded=-10i done=100

The : prefix prevents rtcontrol from assuming this is a d. item command.

Make sure that the registered handlers do not have adverse effects when called repeatedly, i.e. know what you’re doing.
The handlers for an event can be listed like so:

rtxmlrpc --repr method.get '' event.download.finished

Relocating Download Data

The most simple variant of changing the download path is setting a new fixed location for all selected items, as follows:

rtcontrol --exec 'directory_base.set="/mnt/data/new/path"' directory=/mnt/data/old/
→˓path

This replaces the location of items stored at /mnt/data/old/path with a new path. But to be really useful, we’d
want to shift any path under a given base directory to a new location – the next command does this by using templating
and calculating the new path based on the old one:

rtcontrol \
--exec 'directory_base.set="{{item.directory|subst("^/mnt/data/","/var/data/")}}"

→˓; >directory=' \
directory=/mnt/data/\*

This selects any item stored under /mnt/data and relocates it to the new base directory /var/data. Fields of
an item can be used via a item.‹field-name› reference. Adding >directory= prints the new location to the
console – a semicolon with spaces on both sides delimits several commands, and the > prints the result of a XMLRPC
command. Also note that the d. prefix to download item commands is implied.

The Moving All Data for Selected Items to a New Location section has more on how to also move the data on disk, in
addition to changing the location in rTorrent’s session as shown here.

Making Shared Data Paths Unique

Another example regarding data paths is this:

1.6. Advanced Features 49



pyrocore Documentation, Release 0.6.1

rtcontrol --from stopped // --anneal dupes= --exec 'directory.set={{item.directory}}-{
→˓{item.hash}}'

That command ensures that items that would download into the same path get a unique name by appending the info
hash, and assumes those items weren’t started yet (i.e. added via load.normal).

Changing Announce URLs in Bulk

The next example replaces an active announce URL with a new one, which is necessary after a domain or passkey
change. Compared to other methods like using sed on the files in your session directory, this does not require a
client restart, and is also safer (the sed approach can easily make your session files unusable). This disables all old
announce URLs in group 0 using a t.multicall, and then adds a new one:

rtcontrol \
--exec 't.multicall=0,t.disable= ; tracker.insert=0,"http://new.example.com/

→˓announce" ; save_full_session=' \
"tracker=http://old.example.com/announce"

The tracker.insert also shows that arguments to commands can be quoted.

Dumping XMLRPC Results as JSON

Instead of printing XMLRPC results using the > prefix, you can use ! instead to store the returned data. If you combine
that with the --json option, you get a JSON-formatted list of those results.

Consider this example:

$ rtcontrol /debian.*cd/ -q -o- --yes --json \
--exec '!hash= ; !t.multicall=*,t.url=,t.is_enabled='

[
{
"d.hash": "26D017BC5A4BEE5C2C69FA5AEC08B7DA0DCFF368",
"t.multicall": [

[
"http://bttracker.debian.org:6969/announce",
1

]
]

}
]

If you omit the -o-, then item data is included:

$ rtcontrol /debian.*cd/ -q --yes --json \
--exec '!hash= ; !t.multicall=*,t.url=,t.is_enabled='

[
{
"item": {

"custom_m_alias": "http://bttracker.debian.org:6969/announce",
...
"up_total": 0

},
"results": {

"d.hash": "26D017BC5A4BEE5C2C69FA5AEC08B7DA0DCFF368",

(continues on next page)

50 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

...
}

}
]

You can also use this to create a list of affected hashes when calling commands with side-effects but no result, by
adding ... ; !hash= to the exec command list.

Using Templates as Filter Values

As mentioned in Filter Conditions, you can compare a string field to a template. This can be a brain twister, so just
look at the following example, which replaces any download path in an item by the real storage path, but only if they
differ.

# List any differences
rtcontrol path='!' is_multi_file=y 'directory=!{{d.realpath}}' \

-qo directory,realpath
rtcontrol path='!' is_multi_file=n 'directory=!{{d.realpath | pathdir}}' \

-qo directory,realpath.pathdir

# Fix any differences (i.e. resolve all symlinks for good)
rtcontrol path='!' is_multi_file=y 'directory=!{{d.realpath}}' \

--exec 'directory_base.set={{item.realpath}}'
rtcontrol path='!' is_multi_file=n 'directory=!{{d.realpath | pathdir}}' \

--exec 'directory.set={{item.realpath | pathdir}}'

As so often, ‘multi’ and ‘single’ items need a slighty different treatment.

Note that [ characters are escaped to [[] after the template expansion, so that things like [2017] in a filename do
not lead to unexpected results. * and ? though are kept intact and are used for glob matching as normal, because they
match their own literal form if they appear in the field value (on the right-hand side).

1.6.2 Using ‘rtxmlrpc’

Querying system information

The rtuptime script shows you essential information about your rTorrent instance:

#! /bin/bash
#
# Shows some essential information about a rTorrent instance
#
SCGI_SOCKET=~/rtorrent/.scgi_local

if test ! -S $SCGI_SOCKET; then
echo >&2 "rTorrent is not running (no socket $SCGI_SOCKET)"
exit 1

fi

echo -n rTorrent $(rtxmlrpc system.client_version)/$(rtxmlrpc system.library_version)
echo -n , up $(rtxmlrpc convert.elapsed_time '' $(ls -l --time-style '+%s' $SCGI_
→˓SOCKET | awk '{print $6}'))
echo -n \ [$(rtcontrol -qo"1 %(uploaded)s %(size)s" \* | \

awk '{ TOT += $1; UP += $2; SUM += $3} END { print TOT " loaded; U: " UP/1024/
→˓1024/1024 " GiB; S: " SUM/1024/1024/1024 }') GiB] (continues on next page)

1.6. Advanced Features 51



pyrocore Documentation, Release 0.6.1

(continued from previous page)

echo -n , D: $(rtxmlrpc convert.xb '' $(rtxmlrpc throttle.global_down.total))
echo -n \ @ $(rtxmlrpc convert.xb '' $(rtxmlrpc throttle.global_down.rate))/s
echo -n \ of $(rtxmlrpc convert.xb '' $(rtxmlrpc throttle.global_down.max_rate))/s
echo -n , U: $(rtxmlrpc convert.xb '' $(rtxmlrpc throttle.global_up.total))
echo -n \ @ $(rtxmlrpc convert.xb '' $(rtxmlrpc throttle.global_up.rate))/s
echo -n \ of $(rtxmlrpc convert.xb '' $(rtxmlrpc throttle.global_up.max_rate))/s
echo

When called, it prints something like this:

$ rtuptime
rTorrent 0.9.6/0.13.6, up 189:00:28 [315 loaded; U: 177.292 GiB; S: 891.781 GiB],
D: 27.3 GB @ 0.0 KB/s of 520.0 KB/s, U: 36.8 MB @ 0.0 KB/s of 52.0 KB/s

And yes, doing the same in a Python script would be much more CPU efficient. ;)

If you connect via network.scgi.open_port, touch a file in /tmp in your startup script and use that for uptime
checking.

Load Metafile with a Specific Data Path

The following shows how to load a metafile from any path in $metafile, not only a watch directory, with the data
downloaded to $data_dir by adding a d.directory_base.set on-load command. You might need to change
that to d.directory.set depending on your exact use-case.

rtxmlrpc -q load.normal '' "$metafile" \
"d.directory_base.set=\"$data_dir\"" "d.priority.set=1"

Use load.start to start that item immediately. If the metafile has fast-resume information and the data is already
there, no extra hashing is done.

And just to show you can add more on-load commands, the priority of the new item is set to low. Other common
on-load commands are those that set custom values, e.g. the ruTorrent label.

General maintenance tasks

Here are some commands that can help with managing your rTorrent instance:

# Flush ALL session data NOW, use this before you make a backup of your session
→˓directory
rtxmlrpc session.save

Setting and checking throttles

To set the speed of the slow throttle, and then check your new limit and print the current download rate, use:

$ rtxmlrpc throttle.down '' slow 120
0
$ rtxmlrpc throttle.down.max '' slow
122880
$ rtxmlrpc throttle.down.rate '' slow
0

52 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

Note that the speed is specified in KiB/s as a string when setting it but returned in bytes/s as an integer on queries.

The following script makes this available in an easy usable form, e.g. throttle slow 42 – it also shows the
current rate and settings of all defined throttles when called without arguments:

#! /bin/bash
# Set speed of named throttle

#
# CONFIGURATION
#
throttle_name="seed" # default name
unit=1024 # KiB/s

#
# HERE BE DRAGONS!
#
down=false
if test "$1" = "-d"; then

down=true
shift

fi

if test -n "$(echo $1 | tr -d 0-9)"; then
# Non-numeric $1 is a name
throttle_name=$1
shift

fi

if test -z "$1"; then
echo >&2 "Usage: ${0/$HOME/~} [-d] [<throttle-name=$throttle_name>] <rate>"

rtorrent_rc=~/.rtorrent.rc
test -e "$rtorrent_rc" || rtorrent_rc="$(rtxmlrpc system.get_cwd)/rtorrent.rc"
if test -e "$rtorrent_rc"; then

throttles="$(egrep '^throttle[._](up|down)' $rtorrent_rc | tr ._=, ' ' | cut -
→˓f3 -d" " | sort | uniq)"

echo
echo "CURRENT THROTTLE SETTINGS"
for throttle in $throttles; do

echo -e " $throttle\t" \
"U: $(rtxmlrpc to_kb $(rtxmlrpc throttle.up.rate $throttle)) /" \
"$(rtxmlrpc to_kb $(rtxmlrpc throttle.up.max $throttle | sed 's/^-1$/

→˓0/')) KiB/s\t" \
"D: $(rtxmlrpc to_kb $(rtxmlrpc throttle.down.rate $throttle)) /" \
"$(rtxmlrpc to_kb $(rtxmlrpc throttle.down.max $throttle | sed 's/^-1

→˓$/0/')) KiB/s"
done

fi
exit 2

fi

rate=$(( $1 * $unit ))

# Set chosen bandwidth
if $down; then

if test $(rtxmlrpc throttle.down.max $throttle_name) -ne $rate; then
rtxmlrpc -q throttle.down $throttle_name $(( $rate / 1024 ))

(continues on next page)

1.6. Advanced Features 53



pyrocore Documentation, Release 0.6.1

(continued from previous page)

echo "Throttle '$throttle_name' download rate changed to" \
"$(( $(rtxmlrpc throttle.down.max $throttle_name) / 1024 )) KiB/s"

fi
else

if test $(rtxmlrpc throttle.up.max $throttle_name) -ne $rate; then
rtxmlrpc -q throttle.up $throttle_name $(( $rate / 1024 ))
echo "Throttle '$throttle_name' upload rate changed to" \

"$(( $(rtxmlrpc throttle.up.max $throttle_name) / 1024 )) KiB/s"
fi

fi

Global throttling when other computers are up

If you want to be loved by your house-mates, try this:

#! /bin/bash
# Throttle bittorrent when certain hosts are up

#
# CONFIGURATION
#
hosts_to_check="${1:-mom dad}"
full_up=62
full_down=620
nice_up=42
nice_down=123
unit=1024 # KiB/s

#
# HERE BE DRAGONS!
#

# Check if any prioritized hosts are up
up=$(( $full_up * $unit ))
down=$(( $full_down * $unit ))
hosts=""

for host in $hosts_to_check; do
if ping -c1 $host >/dev/null 2>&1; then

up=$(( $nice_up * $unit ))
down=$(( $nice_down * $unit ))
hosts="$hosts $host"

fi
done

reason="at full throttle"
test -z "$hosts" || reason="for$hosts"

# Set chosen bandwidth
if test $(rtxmlrpc throttle.global_up.max_rate) -ne $up; then

echo "Setting upload rate to $(( $up / 1024 )) KiB/s $reason"
rtxmlrpc -q throttle.global_up.max_rate.set_kb $(( $up / 1024 ))

fi
if test $(rtxmlrpc throttle.global_down.max_rate) -ne $down; then

echo "Setting download rate to $(( $down / 1024 )) KiB/s $reason"

(continues on next page)

54 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

rtxmlrpc -q throttle.global_down.max_rate.set_kb $(( $down / 1024 ))
fi

Add it to your crontab and run it every few minutes.

Throttling rTorrent for a limited time

If you want to slow down rTorrent to use your available bandwidth on foreground tasks like browsing, but usually
forget to return the throttle settings back to normal, then you can use the provided rt-backseat script. It will register a
job via at, so that command must be installed on the machine for it to work. The default throttle speed and timeout
can be set at the top of the script.

#! /bin/bash
# Throttle rTorrent for a certain amount of time

#
# CONFIGURATION
#
timeout="now + 10 minutes" # default timeout
throttled=42 # throttled speed
unit=1024 # unit on command line, default KiB/s
queue=r

#
# HERE BE DRAGONS!
#
set -e
set +x

case "$1" in
-h | --help)

echo >&2 "Usage: $0 [«speed» [«timespec»]]"
exit 1
;;

*) : ;;
esac

if test -n "$(echo $1 | tr -d 0-9)"; then
echo >&2 "ERROR: Non-numeric speed"
exit 1

fi

if test -n "$1"; then
throttled="$1"
shift

fi
throttled=$(( $throttled * $unit ))

if test -n "$1"; then
timeout="$@"

fi

if test -n "$(atq -q $queue)"; then
# If there are jobs pending, run 1st one now, and then delete them
at -c $(atq -q $queue | cut -f1 | head -n1) | /bin/sh

(continues on next page)

1.6. Advanced Features 55

https://github.com/pyroscope/pyrocore/blob/master/docs/examples/rt-backseat


pyrocore Documentation, Release 0.6.1

(continued from previous page)

atrm $(atq -q $queue | cut -f1)
fi

current=$(rtxmlrpc throttle.global_down.max_rate)

# Schedule new job to reset rate, and then throttle it
result=$(at -q $queue $timeout <<EOF 2>&1
rtxmlrpc -q throttle.global_down.max_rate.set '' $current
EOF
) || :
if [[ $result =~ .*(error|arbled).* ]]; then

echo >&2 "ERROR: $result"
exit 1

fi
echo $result | sed -re "s~warning: commands will be executed using /bin/sh~~"
rtxmlrpc -q throttle.global_down.max_rate.set '' $throttled

echo "Speed throttled to $(( $throttled / 1024 )) KiB/s," \
"back to $(( $current / 1024 )) KiB/s at $timeout."

1.6.3 rTorrent Queue Manager

Introduction

The pyrotorque command is a daemon that handles background jobs. At first, it was just a flexible torrent queue
manager for starting items one at a time (thus the name pyro-tor-que), but it can now manage any job that does
some background processing for rTorrent, including custom ones that you can add yourself.

It runs in the background parallel to rTorrent and has its own scheduler to run automation jobs similar to rTorrent’s
schedule command — one of the jobs does start stopped items in a controlled fashion, that is the queue manager
part.

Besides the queue manager, the most important job type is TreeWatch. It reacts to file system events (via inotify)
to load new metafiles on the spot, if you add the necessary configuration and activate it. This way you have no delays
at all, and no polling of watch directories in short intervals, most often with no tangible result and just wasted CPU
cycles. Also, you can place the metafiles in arbitrary folders and sub-folders, with just one configuration entry for the
root folder to watch. The queue is able to start items loaded via inotify, i.e. both jobs can work together.

If you want to know about the gory details of the machinery behind this, read Writing Custom Jobs.

Initial Setup

Before you start configuring the daemon, you have to install some additional Python dependencies it needs to do its
work, also depending on what jobs you activate in your configuration. The following is how to install the full set of
dependencies:

~/.local/pyroscope/bin/pip install -r ~/.local/pyroscope/requirements-torque.txt

Watch out for any errors, since this installs several Python extensions that might need some *-dev OS packages
available that you don’t have on your machine.

The pyrotorque queue manager daemon relies on certain additions to rtorrent.rc, these are included in the
standard pyrocore includes that you added when you followed the Configuration Guide. If for whatever reason you
need to add these manually, the file ~/.pyroscope/rtorrent.d/torque.rc.default holds these settings.

56 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

The daemon itself is configured by an additional configuration file ~/.pyroscope/torque.ini containing the
[TORQUE] section. Most settings are already covered in torque.ini.default, including some short explana-
tion what each setting does. The next section shows how to customize these defaults.

Configuration

Minimal Example

The following is a minimal ~/.pyroscope/torque.ini configuration example, only changing a few values
from the defaults to demonstrate key features:

# "pyrotorque" configuration file
#
# For details, see https://pyrocore.readthedocs.io/en/latest/advanced.html#torque-
→˓config
#

[TORQUE]
# Queue manager
job.queue.active = True
job.queue.schedule = second=*/5
job.queue.intermission = 60
job.queue.downloading_max = 3
job.queue.startable = is_ignored=0 message= prio>0

[ prio>2 OR [ NOT [ traits=audio kind_25=jpg,png,tif,bmp ] ] ]
job.queue.downloading = [ prio>1 [ down>3 OR started<2i ] ]

# Tree watch (works together with the queue)
job.treewatch.active = True
job.treewatch.load_mode = start
job.treewatch.queued = True
job.treewatch.path = /var/torrent/watch
job.treewatch.cmd.nfo = f.multicall=*.nfo,f.priority.set=2
job.treewatch.cmd.jpg = f.multicall=*.jpg,f.priority.set=2
job.treewatch.cmd.png = f.multicall=*.png,f.priority.set=2
job.treewatch.cmd.tif = f.multicall=*.tif,f.priority.set=0
job.treewatch.cmd.target = {{# set target path

}}d.custom.set=targetdir,/var/torrent/done/{{label}}/{{relpath}}

Having a minimal configuration with just your changes is recommended, so you get new defaults in later releases
automatically.

See the default configuration for more parameters and what they mean.

Warning: If the folder tree specified in the path setting overlaps with the paths used in existing ‘watch’ schedules
of rtorrent.rc, then please either keep those paths apart, or disable those schedules (comment them out),
before activating tree watch.

Anything else will lead to confusing and inconsistent results.

Queue Settings Explained

In the above example for the queue job, downloading_max counts started-but-incomplete items including those
that ignore commands. Only if there are fewer of these items in the client than that number, a new item will be started.

1.6. Advanced Features 57

https://github.com/pyroscope/pyrocore/blob/master/src/pyrocore/data/config/torque.ini


pyrocore Documentation, Release 0.6.1

This is the queue’s length and thus the most important parameter.

The queue never stops any items, i.e. downloading_max is not enforced and you can manually start more items
than that if you want to. That is also the reason items that should be under queue control must be loaded in ‘normal’
mode, i.e. stopped.

Other queue parameters are the minimum number of items in ‘downloading’ state named downloading_min, which
trumps start_at_once, the maximum number of items to start in one run of the job. Both default to 1. Since the
default schedule is second=*/15, that means at most one item would be started every 15 seconds.

But that default is changed using the following two lines:

job.queue.schedule = second=*/5
job.queue.intermission = 60

This makes the queue manager check more often whether there is something startable, but prevents it from starting the
next batch of items when the last start was less than intermission seconds ago.

The startable condition (repeated below for reference) prevents ignored items, ones having a non-empty message,
and those with the lowest priority from being started. Note that tree watch sets the priority of items loaded in ‘normal’
mode to zero – that prio>0 condition then excludes them from being started automatically some time later, until you
press + to increase that priority. You can also delay not-yet-started items using the - key until the item has a priority
of zero (a/k/a off).

job.queue.startable = is_ignored=0 message= prio>0
[ prio>2 OR [ NOT [ traits=audio kind_25=jpg,png,tif,bmp ] ] ]

This sample condition also adds the extra hurdle that audio downloads that don’t stay below a 25% threshold regarding
contained images are not started automatically. Unless you raise the priority to 3 (high) using the + key, then they’re
fair game for the queue. Go do all that with a plain rTorrent watch dir, in one line of configuration.

The parameter sort_fields is used to determinate in what order startable items are handled. By default, higher
priority items are started first, and age is used within each priority class.

Above, it was mentioned downloading_max counts started-but-incomplete items. The exact definition of that
classification can be changed using the downloading condition. A given condition is always extended with
is_active=1 is_complete=0, i.e. the started-but-incomplete requirement.

job.queue.downloading = [ prio>1 [ down>3 OR started<2i ] ]

In plain English, this example says we only count items that have a normal or high priority, and transfer data or were
started in the last 2 minutes. The priority check means you can ‘hide’ started items from the queue by setting them to
low, e.g. because they’re awfully slow and prevent your full bandwidth from being used.

The second part automatically ignores stalled items unless just started. This prevents disk trashing when a big item is
still creating its files and thus has no data transfer – it looks stalled, but we do not want yet another item to be started
and increasing disk I/O even more, so the manager sees those idle but young items as occupying a slot in the queue.

Tree Watch Details

The treewatch job is set to co-operate with the queue as previously explained, and load items as ready to be started
(i.e. in stopped state, but with normal priority). Any load_mode that is not either start or started is considered
as equivalent to load.normal.

job.treewatch.active = True
job.treewatch.load_mode = start
job.treewatch.queued = True

58 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

The configuration settings for load_mode and queued can also be changed on a case-by-case basis. For that, one
of the ‘flags’ load, start, or queued has to appear in the path of the loaded metafile – either as a folder name, or
else delimited by dots in the file name. These examples should help with understanding how to use that:

load and start these, ignoring what 'load_mode' says
.../tv/start/foo.torrent
.../movies/foo.start.torrent

just load these, ignoring what 'load_mode' says
.../tv/load/foo.torrent
.../movies/foo.load.torrent

always queue these, using the configured 'load_mode'
.../tv/queue/foo.torrent
.../movies/foo.queue.torrent

Should you have both start and load in a path, then start wins.

path determines the root of the folder tree to watch for new metafiles via registration with the inotify mechanism
of Linux. That means they are loaded milliseconds after they’re written to disk, without any excessive polling.

job.treewatch.path = /var/torrent/watch

You can provide more that one tree to watch, by separating the root folders with :.

The cmd.«name» settings can be used to provide additional load commands, executed during loading the new item,
before it is started (in case it is started at all). This is equivalent to the commands you can append to a rTorrent load.*
command. They’re added in the alphabetic order of their names.

job.treewatch.cmd.nfo = f.multicall=*.nfo,f.priority.set=2
job.treewatch.cmd.jpg = f.multicall=*.jpg,f.priority.set=2
job.treewatch.cmd.png = f.multicall=*.png,f.priority.set=2
job.treewatch.cmd.tif = f.multicall=*.tif,f.priority.set=0
job.treewatch.cmd.target = {{# set target path

}}d.custom.set=targetdir,/var/torrent/done/{{label}}/{{relpath}}

The above example shows how to set any NFO files and JPG/PNG images to high priority, and prevent downloading
any TIF images by default.

Commands can be templates, see Using the Tree Watch Job for further details on the target command.

Note: In case no files are loaded after you activated tree watch, you can set trace_inotify to True to get
detailed logs of all file system events as they are received.

Also keep in mind that for now, if you add metafiles while the pyrotorque daemon is not running, you have to
touch them manually after you have restarted it to load them.

Testing Your Configuration

After having completed your configuration, you’re ready to test it, by following these steps:

1. Execute rm ~/.pyroscope/run/pyrotorque to prevent the watchdog from starting the manager in
the background.

2. Stop any running daemon process using pyrotorque --stop, just in case.

1.6. Advanced Features 59



pyrocore Documentation, Release 0.6.1

3. Run pyrotorque --fg -v in a terminal, this will start the job scheduler in the foreground with ver-
bose logging directly to that terminal, exactly what you need to check out if your configuration does what you
intended. It also helps you to understand what goes on “under the hood”.

4. If you applied changes to your configuration, stop the running scheduler by pressing CTRL-C, then restart it.
Wash, rinse, repeat.

5. Press CTRL-C for the last time and call pyrotorque --status, it should show that no daemon process is
running.

6. Execute touch ~/.pyroscope/run/pyrotorque — this does create the guard file again, which must
always exist if you want pyrotorque to run in the background (otherwise you’ll just get an error message on
the console or in the log, if you try to launch it).

7. Wait up to 300 seconds, and if your rTorrent configuration has the pyro_watchdog schedule as it should
have, pyrotorque --status will show that a daemon process was automatically started by that rTorrent
schedule.

8. Enjoy, and check ~/.pyroscope/log/torque.log for feedback from the daemon process.

If you want to restart the daemon running in the background immediately, e.g. to reload torque.ini or after a
software update, use pyrotorque --cron --restart.

Built-in Jobs

The QueueManager is just one kind of job that can be run by pyrotorque. It has an embedded scheduler that
can run any number of additional jobs, the following sections explain the built-in ones. Since these jobs can be loaded
from any available Python package, you can also easily write your own.

Jobs and their configuration are added in the [TORQUE] section, by providing at least the parameters job.«NAME».
handler and job.«NAME».schedule. Depending on the handler, additional parameters can/must be provided
(see below for a list of built-in handlers and what they do).

Details on the schedule parameter can be found here. Multiple fields must be separated by spaces, so if a field value
contains a space, it must be quoted, e.g. hour=12 "day=3rd sun". The handler parameter tells the system
where to look for the job implementation, see the handler descriptions below for the correct values.

QueueManager

pyrocore.torrent.queue:QueueManager manages queued downloads (i.e. starts them in a controlled man-
ner), it is described in detail further up on this page.

TreeWatch (beta, not feature-complete)

pyrocore.torrent.watch:TreeWatch watches a folder tree, which can be nested arbitrarily. Loading of new
.torrent files is immediate (using libnotify).

TODO Each sub-directory can contain a watch.ini configuration file for parameters like whether to start new items
immediately, and for overriding the completion path.

See the explanation of the example configuration above and Using the Tree Watch Job for further details.

EngineStats

pyrocore.torrent.jobs:EngineStats runs once per minute, checks the connection to rTorrent, and logs
some statistical information.

You can change it to run only hourly by adding this to the configuration: job.connstats.schedule =
hour=*

60 Chapter 1. Contents of This Manual

https://apscheduler.readthedocs.io/en/v2.1.2/cronschedule.html


pyrocore Documentation, Release 0.6.1

1.6.4 Using the Tree Watch Job

Introduction

As mentioned in rTorrent Queue Manager, commands configured to be executed during item loading can be templates.
This can be used to support all sorts of tricks, the most common ones are explained here, including fully dynamic
completion moving. If the following explanation of the inner workings is too technical and nerdy for you, skip to the
Tree Watch Examples section below, and just adapt one of the prepared use cases to your setup.

So how does this work? When a .torrent file is notified for loading via inotify, it’s parsed and contained data
is put into variables that can be used in the command templates. In order to get an idea what variables are available,
you can dump the templating namespace for a metafile to the console, by calling the watch job directly.

Consider this example:

$ date >example.dat
$ mktor -q example.dat http://tracker.example.com/
$ python-pyrocore -m pyrocore.torrent.watch -v example.dat.torrent
...
DEBUG Tree watcher created with config Bunch(active=False, ...

cmd.target='{{# set target path\n}}d.custom.set=targetdir,/var/torrent/done/{
→˓{label}}/{{relpath}}',

dry_run=True, handler='pyrocore.torrent.watch:TreeWatch', job_name='treewatch',
load_mode='start', path='/var/torrent', queued='True', quiet='False', schedule=

→˓'hour=*')
DEBUG custom commands = {'target': <Template 2d01990 name=None>, 'nfo': f.
→˓multicall=*.nfo,f.set_priority=2, ...}
INFO Templating values are:

commands=[..., 'd.custom.set=targetdir,/var/torrent/done//pyrocore', ...]
filetype='.dat'
...
info_hash='8D59E3FD8E78CC9896BDE4D65B0DC9BDBA0ADC70'
info_name='example.dat'
label=''
pathname='/var/torrent/pyroscope/example.dat.torrent'
relpath='pyrocore'
tracker_alias='tracker.example.com'
traits=Bunch(kind=None)
watch_path=set(['/var/torrent'])

Things to take note of:

1. the target custom command is expanded to set the targetdir rTorrent attribute to the completion path
(which can then be used in a typical event.download.finished handler), using the relpath variable
which is obtained from the full .torrent path, relative to the watch dir root.

2. all kinds of other information is made available, like the torrent’s info hash and the tracker alias; thus you can
write conditional templates based on tracker, or use the tracker name in a completion path.

3. for certain types of downloads, traits provides parsed information to build specific target paths, e.g. for the
Pioneer.One.S01E06.720p.x264-VODO TV episode, you’ll get this:

label='tv/mkv'
traits=Bunch(aspect=None, codec='x264', episode='06', extension=None, format='720p
→˓',

group='VODO', kind='tv', pattern='Normal TV Episodes', release=None,
release_tags=None, season='01', show='Pioneer.One', sound=None, title=None)

1.6. Advanced Features 61



pyrocore Documentation, Release 0.6.1

Tree Watch Examples

• Completion Moving

• Tree Watch with Sorting

Completion Moving

Since the templating namespace automatically includes the path of a loaded .torrent file relative to the watch root
(in relpath, see above example namespace output and the config example further down), you can set the “move on
completion” target using that value.

job.treewatch.cmd.target = {{# set target path
}}d.custom.set=targetdir,/var/torrent/done/{{label}}/{{relpath}}

Note that this still needs a typical completion event handler that takes the custom variable that is set, and moves the
data based on its value.

Tree Watch with Sorting

This example adds a second job for a sorted tree that directly saves the data into a path based on the loaded metafile’s
location.

# Tree watch with location
job.watch-sorted.handler = pyrocore.torrent.watch:TreeWatch
job.watch-sorted.schedule = hour=*
job.watch-sorted.active = True

job.watch-sorted.load_mode = normal
job.watch-sorted.queued = True
job.watch-sorted.path = /var/torrent/sorted/watch
job.watch-sorted.cmd.setdir = {{# set download path

}}{{if '/music/' in pathname}}{{# add metafile basename to path
}}d.directory_base.set="/var/torrent/sorted/{{relpath}}/{{pathname|h.pathname}

→˓}"{{#
}}{{elif traits.kind == 'tv'}}{{# store TV content into separate show folders

}}d.directory.set="/var/torrent/sorted/{{relpath}}/{{traits.get('show', '_
→˓UNKNOWN').replace('.',' ').title()}}"{{#

}}{{else}}{{# just use the relative metafile location
}}d.directory.set="/var/torrent/sorted/{{relpath}}"{{#

}}{{endif}}

Change the values in the second block to suit your needs. As given, an item loaded from .../sorted/watch/
movies/*.torrentwould end up in the .../sorted/movies directory (with the filename coming from inside
the metafile as usual), and it won’t start by itself.

Also, paths containing music use the metafile’s basename as the data directory, and metafiles recognized as TV
content get separated into show directories.

62 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

1.7 Custom Python Code

You can write your own code for pyrocore implementing custom features, by adding fields, your own command
line scripts, or pyrotorque jobs. You probably need a solid grasp of Python for this.

1.7.1 Defining Custom Fields

Introduction

As mentioned in the Configuration Guide, the config.py script can be used to add custom logic to your setup. The
most common use for this file is adding custom fields.

To add user-defined fields you can put code describing them into your ~/.pyroscope/config.py file. You
can then use your custom field just like any built-in one, e.g. issue a command like rtcontrol --from-view
incomplete \* -qco partial_done,name (see below examples). They’re also listed when you call
rtcontrol --help-fields.

Basic Custom Field Code

The following is the framework you need to add before putting in your field definitions:

def _custom_fields():
""" Yield custom field definitions.
"""
# Import some commonly needed modules
from pyrocore.torrent import engine, matching
from pyrocore.util import fmt, os

# PUT CUSTOM FIELD CODE HERE

# Register our factory with the system
custom_field_factories.append(_custom_fields)

In place of the # PUT CUSTOM FIELD CODE HERE comment you can add any combination of the examples
below, or your own code. Be sure to do so at the correct indent level, the example snippets are left-aligned and need
to be indented by 4 spaces.

Custom Field Examples

• Adding rTorrent fields not supported by default

• Checking that certain files are present

• Calculating information about partial downloads

• Extract TV data from item name

• Only start items that you have disk space for

1.7. Custom Python Code 63

https://github.com/TechBookHunter/Free-Python-Books#free-python-books


pyrocore Documentation, Release 0.6.1

Adding rTorrent fields not supported by default

# Add rTorrent attributes not available by default
def get_tracker_field(obj, name, aggregator=sum):

"Get an aggregated tracker field."
return aggregator(obj._engine._rpc.t.multicall(obj._fields["hash"], 0, "t.%s=" %

→˓name)[0])

yield engine.OnDemandField(int, "peers_connected", "number of connected peers",
→˓matcher=matching.FloatFilter)
yield engine.DynamicField(int, "downloaders", "number of completed downloads",
→˓matcher=matching.FloatFilter,

accessor=lambda o: get_tracker_field(o, "scrape_downloaded"))
yield engine.DynamicField(int, "seeds", "number of seeds", matcher=matching.
→˓FloatFilter,

accessor=lambda o: get_tracker_field(o, "scrape_complete"))
yield engine.DynamicField(int, "leeches", "number of leeches", matcher=matching.
→˓FloatFilter,

accessor=lambda o: get_tracker_field(o, "scrape_incomplete"))
yield engine.DynamicField(engine.untyped, "lastscraped", "time of last scrape",
→˓matcher=matching.TimeFilter,

accessor=lambda o: get_tracker_field(o, "scrape_time_last", max),
formatter=lambda dt: fmt.human_duration(float(dt), precision=2, short=True))

# Add peer attributes not available by default
def get_peer_data(obj, name, aggregator=None):

"Get some peer data via a multicall."
aggregator = aggregator or (lambda _: _)
result = obj._engine._rpc.p.multicall(obj._fields["hash"], 0, "p.%s=" % name)
return aggregator([i[0] for i in result])

yield engine.DynamicField(set, "peers_ip", "list of IP addresses for connected peers",
matcher=matching.TaggedAsFilter, formatter=", ".join,
accessor=lambda o: set(get_peer_data(o, "address")))

Checking that certain files are present

# Add file checkers
def has_nfo(obj):

"Check for .NFO file."
pathname = obj.path
if pathname and os.path.isdir(pathname):

return any(i.lower().endswith(".nfo") for i in os.listdir(pathname))
else:

return False if pathname else None

def has_thumb(obj):
"Check for folder.jpg file."
pathname = obj.path
if pathname and os.path.isdir(pathname):

return any(i.lower() == "folder.jpg" for i in os.listdir(pathname))
else:

return False if pathname else None

yield engine.DynamicField(engine.untyped, "has_nfo", "does download have a .NFO file?
→˓", (continues on next page)

64 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

matcher=matching.BoolFilter, accessor=has_nfo,
formatter=lambda val: "NFO" if val else "!DTA" if val is None else "----")

yield engine.DynamicField(engine.untyped, "has_thumb", "does download have a folder.
→˓jpg file?",

matcher=matching.BoolFilter, accessor=has_thumb,
formatter=lambda val: "THMB" if val else "!DTA" if val is None else "----")

Calculating information about partial downloads

Note that the partial_done value can be a little lower than it actually should be, when chunks shared by different
files are not yet complete; but it will eventually reach 100 when all selected chunks are downloaded in full.

# Fields for partial downloads
def partial_info(obj, name):

"Helper for partial download info"
try:

return obj._fields[name]
except KeyError:

f_attr = ["get_completed_chunks", "get_size_chunks", "get_range_first", "get_
→˓range_second"]

chunk_size = obj.fetch("chunk_size")
prev_chunk = -1
size, completed, chunks = 0, 0, 0
for f in obj._get_files(f_attr):

if f.prio: # selected?
shared = int(f.range_first == prev_chunk)
size += f.size
completed += f.completed_chunks - shared
chunks += f.size_chunks - shared
prev_chunk = f.range_second - 1

obj._fields["partial_size"] = size
obj._fields["partial_missing"] = (chunks - completed) * chunk_size
obj._fields["partial_done"] = 100.0 * completed / chunks if chunks else 0.0

return obj._fields[name]

yield engine.DynamicField(int, "partial_size", "bytes selected for download",
matcher=matching.ByteSizeFilter,
accessor=lambda o: partial_info(o, "partial_size"))

yield engine.DynamicField(int, "partial_missing", "bytes missing from selected chunks
→˓",

matcher=matching.ByteSizeFilter,
accessor=lambda o: partial_info(o, "partial_missing"))

yield engine.DynamicField(float, "partial_done", "percent complete of selected chunks
→˓",

matcher=matching.FloatFilter,
accessor=lambda o: partial_info(o, "partial_done"))

Extract TV data from item name

This defines the tv_series and tv_episode fields, that are non-empty when the item name follows the “usual”
naming conventions. Try it using something like rtcontrol loaded=-2w traits=tv -co tv_series,
tv_episode,name.

1.7. Custom Python Code 65



pyrocore Documentation, Release 0.6.1

# Map name field to TV series name, if applicable, else an empty string
from pyrocore.util import traits

def tv_mapper(obj, name, templ):
"Helper for TV name mapping"
try:

return obj._fields[name]
except KeyError:

itemname = obj.name
result = ""

kind, info = traits.name_trait(itemname, add_info=True)
if kind == "tv":

try:
info["show"] = ' '.join([i.capitalize() for i in info["show"].replace(

→˓'.',' ').replace('_',' ').split()])
result = templ % info

except KeyError, exc:
#print exc
pass

obj._fields[name] = result
return result

yield engine.DynamicField(fmt.to_unicode, "tv_series", "series name of a TV item",
matcher=matching.PatternFilter, accessor= lambda o: tv_mapper(o, "tv_series", "

→˓%(show)s"))
yield engine.DynamicField(fmt.to_unicode, "tv_episode", "series name and episode
→˓number of a TV item",

matcher=matching.PatternFilter, accessor= lambda o: tv_mapper(o, "tv_episode", "
→˓%(show)s.S%(season)sE%(episode)s"))

Only start items that you have disk space for

This example works together with rTorrent Queue Manager, so that only items that pass a disk space check are actually
started. Meaning you can safely employ automatic downloading via e.g. RSS, without fear of a disk full situation when
your disk space housekeeping fails.

It is also much more robust than a schedule using rTorrent’s close_low_diskspace command – pre-allocation
of a started item still eats up disk space, and stopping an item shortly afterwards doesn’t fix that. Which means if a
RSS feed constantly adds new auto-started items, your disk will fill up when using only such a schedule.

The first step is to add a custom field that checks whether an item has room on the target device. As with the other
examples, place this in your config.py (read the 1st two sections, before the “Examples” one).

# Disk space check
def has_room(obj):

"Check disk space."
pathname = obj.path
try:

if pathname and not os.path.exists(pathname):
pathname = os.path.dirname(pathname)

if pathname and os.path.exists(pathname):
stats = os.statvfs(pathname)
return (stats.f_bavail * stats.f_frsize - int(diskspace_threshold_mb) *

→˓1024**2

(continues on next page)

66 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

> obj.size * (1.0 - obj.done / 100.0))
else:

return None
except UnicodeEncodeError as exc:

raise ValueError('Problematic filename %r: %s' % (pathname, exc))

yield engine.DynamicField(engine.untyped, "has_room",
"check whether the download will fit on its target device",
matcher=matching.BoolFilter, accessor=has_room,
formatter=lambda val: "OK" if val else "??" if val is None else "NO")

globals().setdefault("diskspace_threshold_mb", "500")

And now, all you need is to add has_room=y to your job.queue.startable conditions in torque.ini.
Done.

Important: To ensure that checking for free space works as expected, only start one item at a time, and enforce a
delay after each start, so that disk space can be claimed before the next item’s check is performed.

In other words, use queue configuation values similar to these:

job.queue.schedule = second=*/5
job.queue.start_at_once = 1
job.queue.intermission = 120

Note that you can set the threshold of space to keep free (in MiB) in the GLOBAL section of config.ini, and
the default is 500MiB. You should keep your close_low_diskspace schedule for rTorrent as a fallback, and
set diskspace_threshold_mb higher than the limit given there (so that normally, the low space check never
triggers).

It’s a good idea to set diskspace_threshold_mb a good deal higher than the hard limit that
close_low_diskspace enforces. That makes automatic downloading stop at the higher threshold, but leaves
you with wiggle room for manual starting of important stuff that won’t be stopped just a moment later, as long as it
fits into that gap between the two values.

1.7.2 Adding Custom Template Helpers

In templating contexts, there is an empty c namespace (think custom or config), just like h for helpers. You
can populate that namespace with your own helpers as you need them, from simple string transformations to calling
external programs or web interfaces.

The following example illustrates the concept, and belongs into ~/.pyroscope/config.py.

def _hostname(ip):
"""Helper to e.g. look up peer IPs."""
import socket

return socket.gethostbyaddr(ip)[0] if ip else ip

custom_template_helpers.hostname = _hostname

This demonstrates the call of that helper using a custom field, a real use-case would be to resolve peer IPs and the like.

1.7. Custom Python Code 67



pyrocore Documentation, Release 0.6.1

$ rtcontrol -qo '{{d.fetch("custom_ip")}} → {{d.fetch("custom_ip") | c.hostname}}' //
→˓-/1
8.8.8.8 → google-public-dns-a.google.com

1.7.3 Writing Your Own Scripts

Introduction

The pyrocore Python package contains powerful helper classes that make remote access to rTorrent child’s play
(see API Documentation). And your tools get the same Look & Feel like the built-in PyroScope commands, as long as
you use the provided base class pyrocore.scripts.base.ScriptBaseWithConfig.

See for yourself:

#! /usr/bin/env python-pyrocore
# -*- coding: utf-8 -*-

# Enter the magic kingdom
from pyrocore import config
from pyrocore.scripts import base

class UserScript(base.ScriptBaseWithConfig):
"""

Just some script you wrote.
"""

# argument description for the usage information
ARGS_HELP = "<arg_1>... <arg_n>"

# set your own version
VERSION = '1.0'

# (optionally) define your licensing
COPYRIGHT = u'Copyright (c) ...'

def add_options(self):
""" Add program options.
"""
super(UserScript, self).add_options()

# basic options
##self.add_bool_option("-n", "--dry-run",
## help="don't do anything, just tell what would happen")

def mainloop(self):
""" The main loop.
"""
# Grab your magic wand
proxy = config.engine.open()

# Wave it
torrents = list(config.engine.items())

(continues on next page)

68 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

# Abracadabra
print "You have loaded %d torrents tracked by %d trackers." % (

len(torrents),
len(set(i.alias for i in torrents)),

)

self.LOG.info("XMLRPC stats: %s" % proxy)

if __name__ == "__main__":
base.ScriptBase.setup()
UserScript().run()

Another full example is the dynamic seed throttle script.

Note: If you wondered about the first line referring to a python-pyrocore command, that is an alias the instal-
lation scripts create for the Python interpreter of the pyrocore virtualenv. This way, your script will always use the
correct environment that actually offers the right packages.

For simple calls, you can also use the rtxmlrpc command on a shell prompt, see Using ‘rtxmlrpc’ for that. For a ref-
erence of the rTorrent XMLRPC interface, see rTorrent XMLRPC. Another common way to add your own extensions
is Defining Custom Fields, usable by rtcontrol just like built-in ones.

Interactive use in a Python shell

You can also access rTorrent interactively, like this:

>>> from pyrocore import connect
>>> rt = connect()
>>> len(set(i.tracker for i in rt.items()))
2
>>> rt.engine_software
'rTorrent 0.9.2/0.13.2'
>>> rt.uptime
1325.6771779060364
>>> proxy = rt.open()
>>> len(proxy.system.listMethods())
1033

Interactive use on a shell prompt

Besides connect, there is another convenience function called view. If you install pythonpy into your pyrocore
virtualenv, that means you can do rtcontrol-like things with the full expressiveness of Python:

$ ~/.local/pyroscope/bin/pip -q install 'pythonpy'
$ ln -nfs ~/.local/pyroscope/bin/py ~/bin/rtpy
$ rtpy "[x.name for x in pyrocore.view('stopped') if x.size > 1.4*1024**3]"
robolinux64-mate3d-v9.3.iso
$ rtpy "sorted(x.name for x in pyrocore.view() if x.name.endswith('.iso'))"
Container Linux 1745.7.0.iso
debian-9.4.0-amd64-netinst.iso
debian-9.4.0-amd64-xfce-CD-1.iso

(continues on next page)

1.7. Custom Python Code 69

https://github.com/pyroscope/pyrocore/blob/master/docs/examples/rt_cron_throttle_seed
https://github.com/Russell91/pythonpy#usage


pyrocore Documentation, Release 0.6.1

(continued from previous page)

robolinux64-mate3d-v9.3.iso
$ rtpy "json.dumps(indent=4, sort_keys=True,

obj=[x.as_dict() for x in pyrocore.view() if 'robolinux' in x.name])"
[

{
"custom_m_alias": ...
"name": "robolinux64-mate3d-v9.3.iso",
...
"size": 1527775232,
...
"up_total": 0

}
]

If you do not pass a view name, default is assumed.

Using pyrocore as a library in other projects

The example in the first section is an easy way to create user-defined scripts. If you want to use pyrocore’s features
in another runtime environment, you just have to load the configuration manually (what pyrocore.scripts.
base.ScriptBaseWithConfig does for you otherwise).

# Details depend on the system you want to extend, of course
from some_system import plugin
from pyrocore import error
from pyrocore.util import load_config

def my_rtorrent_plugin():
""" Initialize plugin.
"""
try:

load_config.ConfigLoader().load()
except error.LoggableError as exc:

# Handle accordingly...
else:

# Do some other stuff...

plugin.register(my_rtorrent_plugin)

Example Scripts

• Accessing files in download items

• Core stats of active downloads

• List Stuck Tracker Announces

Note: The following snippets are meant to be placed and executed within the mainloop of the script skeleton found
in Introduction.

70 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

Accessing files in download items

To get all the files for several items at once, we combine system.multicall and f.multicall to one big
efficient mess.

from pprint import pprint, pformat

# The attributes we want to fetch
methods = [

"f.get_path",
"f.get_size_bytes",
"f.get_last_touched",
"f.get_priority",
"f.is_created",
"f.is_open",

]

# Build the multicall argument
f_calls = [method + '=' for method in methods]
calls = [{"methodName": "f.multicall", "params": [infohash, 0] + f_calls}

for infohash in self.args
]

# Make the calls
multicall = proxy.system.multicall
result = multicall(calls)

# Print the results
for infohash, (files,) in zip(self.args, result):

print ("~~~ %s [%d file(s)] " % (infohash, len(files))).ljust(78, '~')
pprint(files)

self.LOG.info("Multicall stats: %s" % multicall)

Core stats of active downloads

The rt-down-stats script prints some statistics about currently active downloads, particularly the range of ex-
pected arrival times.

It shows how nicely you can handle the result of config.engine.multicall, which is using Python’s
namedtuple under the hood, based on a simple field list like this:

FIELDS = ('is_active', 'left_bytes', 'size_bytes', 'down.rate', 'priority')
MIN_STALLED_RATE = 5 * 1024
STALLED_PERCENT = 10

The first few lines of the mainloop then use the multicall helper method, to make accessing the result list
actually readable. So instead of obscuring intent with numerical indexes or similar, the actual names of the fetched
attributes are used to access them.

def mainloop(self):
proxy = config.engine.open()
all_items = list(config.engine.multicall("incomplete", self.FIELDS))

(continues on next page)

1.7. Custom Python Code 71



pyrocore Documentation, Release 0.6.1

(continued from previous page)

pending = [d for d in all_items if not d.is_active and d.priority > 0]
print("Queued items: ",

fmt.human_size(sum(d.size_bytes for d in pending)),
'in', len(pending), 'item(s)',
'[{} free]'.format(fmt.human_size(disk_free(proxy.directory.default())).

→˓strip()))

items = [d for d in all_items if d.is_active]
if not items:

print("No active downloads!")
return

good_rates = [d.down_rate for d in items if d.down_rate > self.MIN_STALLED_
→˓RATE]

stalled_rate = max(
self.MIN_STALLED_RATE,
self.STALLED_PERCENT / 100 * sum(good_rates) / len(good_rates) if good_

→˓rates else 0)
stalled_count = sum(d.down_rate < stalled_rate for d in items)
global_down_rate = proxy.throttle.global_down.rate()

total_size = sum(d.size_bytes for d in items)
total_left = sum(d.left_bytes for d in items)
eta_list = [0]
if stalled_count < len(items):

eta_list = [d.left_bytes / d.down_rate for d in items if d.down_rate >=
→˓stalled_rate]

eta_max = total_left / (global_down_rate or 1)

stalled_info = ', {} stalled below {}/s'.format(
stalled_count, fmt.human_size(stalled_rate).strip()) if stalled_count

→˓else ''
print("Size left to download: ",

fmt.human_size(total_left), 'of', fmt.human_size(total_size).strip())
print("Overall download speed:", fmt.human_size(global_down_rate) + '/s')
print("ETA (min → max): ",

fmt_duration(min(eta_list)), '→', fmt_duration(eta_max), '...', fmt_
→˓duration(max(eta_list)),

'[{} item(s){}]'.format(len(items), stalled_info),
)

See the full rt-down-stats script for all the details. If you call it, this is what you get:

$ docs/examples/rt-down-stats.py -q
Size left to download: 997.0 MiB of 1.1 GiB
Overall download speed: 70.8 KiB/s
ETA (min / max): 3h 11m ... 4h 40m [3 item(s)]

List Stuck Tracker Announces

The rt-stuck-trackers script lists started items whose announces are stuck, i.e. where last activity is older than
the normal announce interval.

It shows how to use namedtuple, as mentioned in the previous example, on rTorrent entities other than download
items – in this case the tracker list of an item.

72 Chapter 1. Contents of This Manual

https://github.com/pyroscope/pyrocore/blob/master/docs/examples/rt-down-stats.py


pyrocore Documentation, Release 0.6.1

def mainloop(self):
import time
from urlparse import urlparse
from collections import namedtuple, Counter

from pyrobase import fmt
from pyrocore.util import xmlrpc

proxy = config.engine.open()
now = int(time.time())
fields = ('is_enabled is_busy url min_interval normal_interval'

' activity_time_last success_counter failed_counter scrape_counter
→˓').split()

t_multicall = namedtuple('multicall', fields)
rows = proxy.d.multicall('started', 'd.hash=', 't.multicall=,{}'.format(

','.join(['t.{}='.format(i) for i in fields])))
stuck = Counter()

view = 'tagged'
if self.options.to_tagged and view not in proxy.view.list():

proxy.view.add(xmlrpc.NOHASH, view)

print('{:>5s} {:>2s} {:>5s} {:>5s} {:>6s} {:>13s} {:40s} {}'
.format('S#', 'T#', 'OK', 'Error', 'Scrape', 'Last Announce',

'Infohash', 'Tracker Domain'))
for idx, (infohash, trackers) in enumerate(rows, 1):

trackers = [t_multicall(*t) for t in trackers]

if not any(t.is_enabled for t in trackers):
if self.options.stuck_only:

continue
if self.options.to_tagged:

proxy.d.views.push_back_unique(infohash, view)
proxy.view.set_visible(infohash, view)

domain = 'ALL TRACKERS DISABLED' if trackers else 'NO TRACKERS'
stuck[domain] += 1
print('{i:5d} {n:>2s} {n:>5s} {n:>5s} {n:>5s} {delta:>13s}

→˓{hash} {domain}'
.format(i=idx, n='-', hash=infohash, delta='N/A',

→˓domain=domain))
continue

for num, t in enumerate(trackers, 1):
if not t.is_enabled:

continue

delta = now - t.activity_time_last
if self.options.all or delta > t.normal_interval:

if self.options.to_tagged:
proxy.d.views.push_back_unique(infohash, view)
proxy.view.set_visible(infohash, view)

domain = urlparse(t.url).netloc.split(':')[0]
stuck[domain] += 1

print('{i:5d} {n:2d} '
'{t.success_counter:5d} {t.scrape_counter:5d} {t.failed_

→˓counter:5d} '

(continues on next page)

1.7. Custom Python Code 73



pyrocore Documentation, Release 0.6.1

(continued from previous page)

'{delta} {hash} {domain}'
.format(t=t, i=idx, n=num, hash=infohash, domain=domain,

delta=fmt.human_duration(t.activity_time_last,
precision=2, short=True)))

if sum(stuck.values()):
if self.options.to_tagged:

proxy.ui.current_view.set(view)
self.LOG.info("Stuck items: TOTAL={}, {}".format(sum(stuck.values()),

', '.join(['{}={}'.format(*i) for i in stuck.most_common()])))
self.LOG.debug("XMLRPC stats: %s" % proxy)

See the full rt-stuck-trackers script for all the details. If you call it, this is what you get:

$ docs/examples/rt-stuck-trackers.py -a
S# T# OK Error Scrape Last Announce Infohash Tracker Domain
1 1 180 4 0 53m 48s ago 00........................FF tracker.

→˓example.com
INFO Stuck items: TOTAL=1, tracker.example.com=1
INFO Total time: 0.163 seconds.

The index shown is the item’s position in the started view.

1.7.4 Writing Custom Jobs

First off, you really need to know a good amount of Python to be able to do this. But if you do, you can easily add your
own background processing, more versatile and more efficient than calling rtcontrol in a cron job. The description
here is terse, and mostly just tells you where to look for code examples, and the basics of how a job implementation
interacts with the core system.

Note: While some effort will be spent on keeping the API backwards compatible, there is no guarantee of a stable
API. Follow the commit log and changelogs of releases to get notified when you need to adapt your code.

Jobs are created during pyrotorque startup and registered with the scheduler. Configuration is taken from the
[TORQUE] section of torque.ini, and any job.«job-name».«param-name» setting contributes to a job
named job-name. The handler, schedule, and active settings are used by the core, the rest is passed to the
handler class for customization and depends on the job type.

To locate the job implementation, handler contains a module.path:ClassName coordinate of its class. So
job.foo.handler = my.code:FooJob registers FooJob under the name foo. This means a job can be
scheduled several times, given the right configuration and if the job implementation is designed for it. The given
module must be importable of course, i.e. pip install it into your pyrocore virtualenv.

The schedule defines the call frequency of the job’s runmethod, and active allows to easily disable a job without
removing its configuration – which is used to provide all the default jobs and their settings. A job with active =
False is simply ignored and not added to the scheduler on startup.

The most simple of jobs is the EngineStats one. Click on the link and then on [source] to see its source code.
Some noteworthy facts:

• the initializer gets passed a config parameter, holding all the settings from torque.ini for a particular job
instance, with the job.«name» prefix removed.

• pyrocore.config is imported as config_ini, to not clash with the config dict passed into jobs.

74 Chapter 1. Contents of This Manual

https://github.com/pyroscope/pyrocore/blob/master/docs/examples/rt-stuck-trackers.py


pyrocore Documentation, Release 0.6.1

• create a LOG attribute as shown, for your logging needs.

• to interact with rTorrent, open a proxy connection in run.

• the InfluxDB job shows how to access config parameters, e.g. self.config.dbname.

• raise UserError in the initializer to report configuration mishaps and prevent pyrotorque from starting.

More complex jobs that you can look at are the pyrocore.torrent.watch.TreeWatch and pyrocore.
torrent.queue.QueueManager ones.

1.8 Trouble-Shooting Guide

1.8.1 Reporting Problems

If you have any trouble during pyrocore installation and configuration, or using any of the commands, join the rtorrent-
community channel pyroscope-tools on Gitter. You can also ask questions on platforms like Reddit or Stack Exchange.

1.8. Trouble-Shooting Guide 75

https://gitter.im/rtorrent-community/
https://gitter.im/rtorrent-community/
https://gitter.im/rtorrent-community/pyroscope-tools
https://www.reddit.com/r/rtorrent/
https://unix.stackexchange.com/


pyrocore Documentation, Release 0.6.1

If you are sure there is a bug, then open an issue on GitHub. Make sure that nobody else reported the same problem
before you, there is a search box you can use (after the Filter button). Please note that the GitHub issue tracker is not
a support platform, use the Gitter channel or Reddit for any questions, as mentioned above.

And ESR’s golden oldie How To Ask Questions The Smart Way is still a most valuable resource, too.

Note: Please describe your problem clearly, and provide any pertinent information. What are the version numbers
of software and OS? What did you do? What was the unexpected result? If things worked and ‘suddenly’ broke,
what did you change?

In the chat, don’t ask if somebody is there, just describe your problem. Eventually, someone will notice you –
people do live in different time zones than you.

Put up any logs on 0bin or any other pastebin service, and make sure you removed any personal information you

76 Chapter 1. Contents of This Manual

https://github.com/pyroscope/pyrocore/issues
https://help.github.com/articles/searching-issues/
http://www.catb.org/~esr/faqs/smart-questions.html
http://0bin.net/


pyrocore Documentation, Release 0.6.1

don’t want to be publically known. Copy the pastebin link into the chat window.

The following helps with querying your system environment, e.g. the version of Python and your OS.

1.8.2 Providing Diagnostic Information

Python Diagnostics

Execute the following command to be able to provide some information on your Python installation:

deactivate 2>/dev/null; /usr/bin/virtualenv --version; python <<'.'
import sys, os, time, pprint
pprint.pprint(dict(

version=sys.version,
prefix=sys.prefix,
os_uc_names=os.path.supports_unicode_filenames,
enc_def=sys.getdefaultencoding(),
maxuchr=sys.maxunicode,
enc_fs=sys.getfilesystemencoding(),
tz=time.tzname,
lang=os.getenv("LANG"),
term=os.getenv("TERM"),
sh=os.getenv("SHELL"),

))
.

If enc_fs is not UTF-8, then call dpkg-reconfigure locales (on Debian type systems) and choose a proper
locale (you might also need locale-gen en_US.UTF-8), and make sure LANG is set to en_US.UTF-8 (or
another locale with UTF-8 encoding).

OS Diagnostics

Similarly, execute this in a shell prompt:

uname -a; echo $(lsb_release -as 2>/dev/null); grep name /proc/cpuinfo | uniq -c; \
free -m | head -n2; uptime; \
strings $(which rtorrent) | grep "client version"; \
ldd $(which rtorrent) | egrep "lib(torrent|curses|curl|xmlrpc.so|cares|ssl|crypto)"; \
ps auxw | egrep "USER|/rtorrent" | grep -v grep

1.8.3 Common Problems & Solutions

“rTorrent-PS features NOT active!” during rTorrent startup

As mentioned several times in the installation guides, you must tell the standard rtorrent.rc configuration include
that it’s loaded into a rTorrent-PS installation.

The way to do that is setting the pyro.extended constant to 1:

method.insert = pyro.extended, value|const, 1

If you do that and are not actually running rTorrent-PS, you will get errors about missing commands during startup.

1.8. Trouble-Shooting Guide 77



pyrocore Documentation, Release 0.6.1

WARNING: . . . (update rTorrent-PS)!

If you run vanilla rTorrent instead of rTorrent-PS, these message will appear during startup. They can be silenced, see
below.

If you run rTorrent-PS, the warnings are there to tell you that you should update to a recent version supporting new
features. So just do that.

Otherwise, either ignore the warnings (that is why they are WARNINGs and not ERRORs), or else add the files in
~/.pyroscope/rtorrent.d that are logging them to the .rcignore file. You’ll find the specific files using
grep:

grep -RinH update.rtorrent ~/.pyroscope/rtorrent.d

“Input failed: ExecFile::execute(. . . ) Fork failed.” during searches

This is always a host setup problem and not one in this software. Check your resource limits, namely nofile
(max. number of open file handles) and nproc (max. number of processes). Also look into ~/rtorrent/log/
execute.log if it contains any hints.

“Scheduled command failed: bind_home: Bad key definition.” during startup

Your rTorrent-PS is too old to support the new default key bindings for Home, End, and so on. Either compile the
HEAD of rTorrent-PS to update your installation, or else do this:

echo >>~/.pyroscope/rtorrent.d/.rcignore "bind-navigation-keys.rc.default"

1.9 Software Updates

Warning: The syntax of XMLRPC commands changed with rTorrent version 0.8.9, and continues to change.
Make sure that the versions of rTorrent and PyroScope you plan to install or update to are actually compatible.
There are compensation mechanisms in both projects, but there are limits to those — scan the respective changelogs
for breaking changes.

pyrocore 0.5+ will no longer support the old syntax, and thus not work with rTorrent 0.8.x versions. rTorrent 0.9.6
has the old commands disabled by default, and only a special command line switch will enable them again, for
now. Also, this documentation uses the new syntax (mostly).

1.9.1 Making Backups

Since repairing broken files resulting from faulty updates usually is either a lot of work or simply impossible, always
make a backup. Backups should be made when either PyroScope or rTorrent is changed to a new release version or
git revision.

These steps should make a copy of pretty much anything important:

1. Copy your rTorrent session data and configuration (rtorrent needs to be running):

78 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

rtxmlrpc -q session.save
tar cvfz /tmp/instance-backup-$USER-$(date +'%Y-%m-%d').tgz \

$(echo $(rtxmlrpc session.path)/ | tr -s / /)*.torrent \
~/rtorrent/*.rc ~/rtorrent/rtorrent.d ~/rtorrent/start

2. Backup your current PyroScope virtualenv and configuration (use ~/lib instead of ~/.local for installations
before 0.5.1):

tar cvfz /tmp/pyroscope-backup-$USER-$(date +'%Y-%m-%d').tgz \
~/.pyroscope/ ~/.local/pyroscope/

3. Depending on how you installed rTorrent, make a copy of the rtorrent executable and libtorrent*.
so*. Note that the rTorrent-PS build script installs into versioned directories, i.e. using that you don’t have to
worry if changing to a new rTorrent version — the old one is still available, and you can switch back easily.

1.9.2 Updating the Software

Before adapting and extending your configuration to make use of new features, you first have to update the software
itself. How to do that depends on the way you initially installed it, so follow one of the following sections, depending
on whether you did a release installation or one from source.

How to Do a Release Version Software Update

Remember to read the migration instructions further below, and the changelog, BEFORE installing any new version.

Then to update an existing installation, use these commands (but note the 0.5.1 update is different, see below):

cd ~/.local/pyroscope
bin/pip install -U "pyrocore[templating]"
ln -nfs $(egrep -l '(from.pyrocore.scripts|entry_point.*pyrocore.*console_scripts)'
→˓$PWD/bin/*) ~/bin

If you used pip install --user -U pyrocore without creating a virtualenv, just repeat that command.

Now skip the next section describing a source installation upgrade, and go to the configuration update further below.

How to Update a Source Installation to the Newest Code

BEFORE any update, remember to read the migration instructions further below, the changelog and the list of
commits.

Then to update an existing installation, use this command:

~/.local/pyroscope/update-to-head.sh

Continue with any tasks regarding configuration changes from the next section.

1.9.3 Updating Your Configuration

After you installed a new version of the software, you have to check for necessary changes to the default configuration,
after calling the pyroadmin --create-config or the update-to-head.sh command.

Note that only the *.default files (config.ini.default, config.py.default, and so on) will be over-
written, they are a literal copy of the defaults packaged into the software, and are there for informational purposes

1.9. Software Updates 79

https://github.com/pyroscope/rtorrent-ps#rtorrent-ps
https://github.com/pyroscope/pyrocore/blob/master/debian/changelog
https://github.com/pyroscope/pyrocore/blob/master/debian/changelog
https://github.com/pyroscope/pyrocore/commits/master
https://github.com/pyroscope/pyrocore/commits/master


pyrocore Documentation, Release 0.6.1

only. You can then use the diff tool to check for the differences between your current configuration and the new
default one, and add any changes you want to adopt.

Also note that sections of the configuration you leave out, and keys that you do not overwrite, are automatically taken
from the defaults, which greatly simplifies any update. That is the reason why it is recommended to have a minimal
configuration with just your customizations, in addition to the defaults.

The file ~/.pyroscope/rtorrent-pyro.rc.default, and those contained in ~/.pyroscope/
rtorrent.d, are a different story. They change quite often, and since there is no merging of *.rc.default
with *.rc files, the default ones are normally used. You can still disable those default files one by one using the
rtorrent.d/.rcignore file, in order to provide your own versions or simply disable certain features. That is
way better than switching altogether to *.rc files, again for the reason updates become way more painless. See the
comments at the start of files in rtorrent.d for details.

And remember to always read the changelog!

Migrating to Version 0.5.x

The 0.5.x release line adds a queue manager, watching a directory tree for loading metafiles, and removes support
for ancient versions of Python and rTorrent. More details on the contained changes can be found at GitHub releases
and the changelog. Install at least version 0.5.3, which has a few important fixes.

To upgrade your existing installation, follow these steps:

1. For people that run a source code installation, just use the update-to-head.sh script as described in In-
stalling from GitHub. When your old installation is still in ~/lib, you’ll be presented with the necessary
commands to move to ~/.local after calling ~/lib/pyroscope/update-to-head.sh. Since all the
documentation now points to ~/.local paths, you should switch over.

For PyPI installs, just do a fresh install to the new location at ~/.local.

2. Call pyroadmin --create-config to update the .default configuration examples, and create the new
rtorrent.d directory.

3. In your rTorrent instance, update the start script (and save a copy of the old one before that).

4. You also MUST change the import command in your rtorrent.rc that loads the PyroScope configuration
include:

# Remove the ".default" if you want to change something (else your changes
# get over-written on update, when you put them into ``*.default`` files).
import = ~/.pyroscope/rtorrent-pyro.rc.default

5. Read the rTorrent Queue Manager section if you plan to use item queueing and/or the tree watch feature; both
are inactive by default and need to be enabled. You also need to add the new pyro_watchdog schedule into
your configuration, as shown in the Configuration Guide.

6. Remember to restart rTorrent after any configuration changes.

When you have a rather aged configuration, also consider switching to the up-to-date set of configuration files as found
in the pimp-by-box project, that use the new command names through-out and are thus way more future-proof.

There is an easy to use make-rtorrent-config.sh script, see ‘rTorrent Configuration‘_ on how to use it.
At the same time, update the start script. Note that these configuration files also work with a plain vanilla rTorrent
version, you do not need rTorrent-PS for them to work.

In any case, make a backup of your configuration and scripts, as mentioned at the start of this chapter. After creating
the new configuration, merge in what’s missing from your old configuration, but migrate to the new syntax first. For
adding your custom settings, you can use your own files in the ~/rtorrent/rtorrent.d directory.

80 Chapter 1. Contents of This Manual

https://github.com/pyroscope/pyrocore/blob/master/debian/changelog
https://github.com/pyroscope/pyrocore/releases
https://github.com/pyroscope/pyrocore/blob/master/debian/changelog
https://github.com/pyroscope/rtorrent-ps/blob/master/docs/DebianInstallFromSource.md#rtorrent-startup-script
https://github.com/pyroscope/rtorrent-ps/blob/master/docs/DebianInstallFromSource.md#rtorrent-startup-script
https://github.com/rakshasa/rtorrent/wiki/RPC-Migration-0.9


pyrocore Documentation, Release 0.6.1

Migrating to Version 0.6.1 (UNRELEASED)

The 0.6.x release line adds support for the new canvas v2 feature of rTorrent-PS v1.1 in the configuration files.

Notable rtcontrol changes are a new timestamp field last_xfer, useful in sorting views and selecting items
for deletion that are not in high demand. The --alter-view option allows manipulating filter results in views
incrementally (using several command calls).

More details on the contained changes can be found at GitHub releases and the changelog. If you’re using rTorrent-PS,
also look at its Change History.

When you have a rather aged configuration, also consider switching to the new set of configuration files as found in
the pimp-by-box project, that use the new command names through-out and are thus way more future-proof. They
are also compatible with changes in rTorrent v0.9.7 and rTorrent-PS v1.1 – older files are not and most likely will greet
you with errors after an upgrade. More on that in the upgrade steps below, and right ahead in the next paragraph.

Note that v0.9.7 of rTorrent finally does away with many of those old comamnds. Read the section on 0.5.x, right above
this one, regarding the make-rtorrent-config.sh script, which provides compatible config files covering most
of what people typically need.

To upgrade your existing installation, follow these steps:

1. For people that run a source code installation, just use the update-to-head.sh script as described in In-
stalling from GitHub.

2. Call pyroadmin --create-config to update the .default configuration.

3. You also MUST change the pyrocore config snippet in your rtorrent.rc, and add the system.has fall-
back for vanilla rTorrent and pre-1.1 rTorrent-PS.

# `system.has` polyfill (the "false=" silences the `catch` command, in rTorrent-
→˓PS)
catch = {"false=", "method.redirect=system.has,false"}

Re-read the Configuration Guide, which has more information generally, and extensions to not only
rtorrent.rc but also the minimal config.ini.

Specifically if you use rTorrent-PS 1.1 with the new canvas v2 feature, you then MUST update the files in
~/rtorrent/rtorrent.d/, because there’s lots of relevant changes.

The make-rtorrent-config.sh does that, but overwrites any changes you might have made. The best
way to handle that is to put your config into git before calling the script a second time. That way, diffs get easy
and nothing can be lost – you ‘just’ need to do the merging.

Read rTorrent Configuration about how to avoid changing standard files by using _rtlocal.rc instead,
and/or your own added files in rtorrent.d. Then you have a way more painless updating experience – next
time, anyway.

4. Remember to restart rTorrent after any configuration changes.

In any case, make a backup of your configuration and scripts, as mentioned at the start of this chapter, before per-
forming any update steps. By the way, putting stuff into git, and also committing it, counts as a backup.

1.10 Tempita Templating Engine

author Ian Bicking <ianb@colorstudy.com>

source https://bitbucket.org/ianb/tempita

1.10. Tempita Templating Engine 81

https://github.com/pyroscope/pyrocore/releases
https://github.com/pyroscope/pyrocore/blob/master/debian/changelog
https://rtorrent-ps.readthedocs.io/en/latest/CHANGES.html
https://rtorrent-ps.readthedocs.io/en/latest/install.html#make-rtorrent-config
mailto:ianb@colorstudy.com
https://bitbucket.org/ianb/tempita


pyrocore Documentation, Release 0.6.1

1.10.1 Status & License

Tempita is available under a MIT-style license.

It is not actually actively developed, and not an ambitious project. It does not seek to take over the templating world,
or adopt many new features. I just wanted a small templating language for cases when % and string.Template
weren’t enough.

1.10.2 Why Another Templating Language

Surely the world has enough templating languages? So why did I write another.

I initially used Cheetah as the templating language for Paste Script, but this caused quite a few problems. People
frequently had problems installing Cheetah because it includes a C extension. Also, the errors and invocation can be a
little confusing. This might be okay for something that used Cheetah’s features extensively, except that the templating
was a very minor feature of the system, and many people didn’t even understand or care about where templating came
into the system.

At the same time, I was starting to create reusable WSGI components that had some templating in them. Not a lot of
templating, but enough that string.Template had become too complicated – I need if statements and loops.

Given this, I started looking around for a very small templating language, and I didn’t like anything I found. Many
of them seemed awkward or like toys that were more about the novelty of the implementation than the utility of the
language.

So one night when I felt like coding but didn’t feel like working on anything I was already working on, I wrote this. It
was first called paste.util.template, but I decided it deserved a life of its own, hence Tempita.

1.10.3 The Interface

The interface is intended to look a lot like string.Template. You can create a template object like:

>>> import tempita
>>> tmpl = tempita.Template("""Hello {{name}}""")
>>> tmpl.substitute(name='Bob')
'Hello Bob'

Or if you want to skip the class:

>>> tempita.sub("Hello {{name}}", name='Alice')
'Hello Alice'

Note that the language allows arbitrary Python to be executed, so your templates must be trusted.

You can give a name to your template, which is handy when there is an error (the name will be displayed):

>>> tmpl = tempita.Template('Hi {{name}}', name='tmpl')
>>> tmpl.substitute()
Traceback (most recent call last):

...
NameError: name 'name' is not defined at line 1 column 6 in file tmpl

You can also give a namespace to use by default, which .substitute(...) will augment:

82 Chapter 1. Contents of This Manual

http://cheetahtemplate.org/
http://pythonpaste.org/script/


pyrocore Documentation, Release 0.6.1

>>> tmpl = tempita.Template(
... 'Hi {{upper(name)}}',
... namespace=dict(upper=lambda s: s.upper()))
>>> tmpl.substitute(name='Joe')
'Hi JOE'

Lastly, you can give a dictionary-like object as the argument to .substitute, like:

>>> name = 'Jane'
>>> tmpl.substitute(locals())
'Hi JANE'

There’s also an HTMLTemplate class that is more appropriate for templates that produce HTML.

You can also instantiate a template from a filename with Template.from_filename(filename,
namespace={}, encoding=None). This is like calling:

Template(open(filename, 'rb').read().decode(encoding),
name=filename, namespace=namespace)

1.10.4 Unicode

Tempita tries to handle unicode gracefully, for some value of “graceful”. Template objects have a
default_encoding attribute. It will try to use that encoding whenever unicode and str objects are mixed
in the template. E.g.:

>>> tmpl = tempita.Template(u'Hi {{name}}')
>>> import sys
>>> if sys.version.startswith('2'): # unicode is the default in 3 -> failing test
... val = tmpl.substitute(name='Jos\xc3\xa9')
... comparison = val == u'Hi Jos\xe9'
... else:
... comparison = True
>>> comparison
True
>>> tmpl = tempita.Template('Hi {{name}}')
>>> print (tmpl.substitute(name=u'Jos\xe9'))
Hi José

The default encoding is UTF8.

1.10.5 The Tempita Language

The language is fairly simple; all the constructs look like {{stuff}}.

Substitution

To insert a variable or expression, use {{expression}}. You can’t use }} in your expression, but if it comes
up just use } } (put a space between them). You can pass your expression through filters with {{expression |
filter}}, for instance {{expression | repr}}. This is entirely equivalent to {{repr(expression)}}.
But it might look nicer to some people; I took it from Django because I liked it. There’s a shared namespace, so repr
is just an object in the namespace.

1.10. Tempita Templating Engine 83



pyrocore Documentation, Release 0.6.1

If you want to have {{ or }} in your template, you must use the built-in variables like {{start_braces}} and
{{end_braces}}. There’s no escape character.

You may also specify the delimiters as an argument to the Template __init__ method:

>>> tempita.Template(content='Hello ${name}', delimiters=('${', '}')).substitute(name=
→˓'world')
'Hello world'

The delimiters argument must be of length two and both items must be strings.

None, as a special case, is substituted as the empty string.

Also there is a command for setting default values in your template:

{{default width = 100}}

You can use this so that the width variable will always have a value in your template (the number 100). If someone
calls tmpl.substitute(width=200) then this will have no effect; only if the variable is undefined will this
default matter. You can use any expression to the right of the =.

if

You can do an if statement with:

{{if condition}}
true stuff

{{elif other_condition}}
other stuff

{{else}}
final stuff

{{endif}}

Some of the blank lines will be removed when, as in this case, they only contain a single directive. A trailing : is
optional (like {{if condition:}}).

for

Loops should be unsurprising:

{{for a, b in items}}
{{a}} = {{b | repr}}

{{endfor}}

See? Unsurprising. Note that nested tuples (like for a, (b, c) in...) are not supported (patches welcome).

inherit & def

You can do template inheritance. To inherit from another template do:

{{inherit "some_other_file"}}

From Python you must also pass in, to Template, a get_template function; the implementation for Template.
from_filename(...) is:

84 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

def get_file_template(name, from_template):
path = os.path.join(os.path.dirname(from_template.name), name)
return from_template.__class__.from_filename(

path, namespace=from_template.namespace,
get_template=from_template.get_template)

You can also pass in a constructor argument default_inherit, which will be the inherited template name when no
{{inherit}} is in the template.

The inherited template is executed with a variable self, which includes self.body which is the text of the child
template. You can also put in definitions in the child, like:

{{def sidebar}}
sidebar links...

{{enddef}}

Then in the parent/inherited template:

{{self.sidebar}}

If you want to make the sidebar method optional, in the inherited template use:

{{self.get.sidebar}}

If sidebar is not defined then this will just result in an object that shows up as the empty string (but is also callable).

This can be called like self.sidebar or self.sidebar() – defs can have arguments (like {{def
sidebar(name)}}), but when there are no arguments you can leave off () (in the call and definition).

Python blocks

For anything more complicated, you can use blocks of Python code, like:

{{py:x = 1}}

{{py:
lots of code
}}

The first form allows statements, like an assignment or raising an exception. The second form is for multiple lines. If
you have multiple lines, then {{py: must be on a line of its own and the code can’t start out indented (but if you have
something like def x(): you would indent the body).

These blocks of code can’t output any values, but they can calculate values and define functions. So you can do
something like:

{{py:
def pad(s):

return s + ' '*(20-len(s))
}}
{{for name, value in kw.items()}}
{{s | pad}} {{value | repr}}
{{endfor}}

As a last detail {{# comments...}} doesn’t do anything at all, because it is a comment.

1.10. Tempita Templating Engine 85



pyrocore Documentation, Release 0.6.1

bunch and looper

There’s two kinds of objects provided to help you in your templates. The first is tempita.bunch, which is just a
dictionary that also lets you use attributes:

>>> bunch = tempita.bunch(a=1)
>>> bunch.a
1
>>> list(bunch.items())
[('a', 1)]
>>> bunch.default = None
>>> print (bunch.b)
None

This can be nice for passing options into a template.

The other object is for use inside the template, and is part of the default namespace, looper. This can be used in
for loops in some convenient ways. You basically use it like:

{{for loop, item in looper(seq)}}
...

{{endfor}}

The loop object has a bunch of useful methods and attributes:

.index The index of the current item (like you’d get with enumerate())

.number The number: .index + 1

.item The item you are looking at. Which you probably already have, but it’s there if you want it.

.next The next item in the sequence, or None if it’s the last item.

.previous The previous item in the sequence, or None if it’s the first item.

.odd True if this is an odd item. The first item is even.

.even True if it’s even.

.first True if this is the first item.

.last True if this is the last item.

.length The total length of the sequence.

.first_group(getter=None) Returns true if this item is the first in the group, where the group is
either of equal objects (probably boring), or when you give a getter. getter can be '.attribute',
like '.last_name' – this lets you group people by their last name. Or a method, like '.
birth_year()' – which calls the method. If it’s just a string, it is expected to be a key in a
dictionary, like 'name' which groups on item['name']. Or you can give a function which
returns the value to group on. This always returns true when .first returns true.

.last_group(getter=None) Like first_group, only returns True when it’s the last of the
group. This always returns true when .last returns true.

Note that there’s currently a limitation in the templating language, so you can’t do {{for loop, (key, value)
in looper(d.items())}}. You’ll have to do:

{{for loop, key_value in looper(d.items())}}
{{py:key, value = key_value}}
...

{{endfor}}

86 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

1.10.6 HTMLTemplate

In addition to Template there is a template specialized for HTML, HTMLTemplate (and the substitution function
sub_html).

The basic thing that it adds is automatic HTML quoting. All values substituted into your template will be quoted
unless they are specially marked.

You mark objects as instances of tempita.html. The easiest way is {{some_string | html}}, though you
can also use tempita.html(string) in your functions.

An example:

>>> tmpl = tempita.HTMLTemplate('''\
... Hi {{name}}!
... <a href="{{href}}">{{title|html}}</a>''')
>>> name = tempita.html('<img src="bob.jpg">')
>>> href = 'Attack!">'
>>> title = '<i>Homepage</i>'
>>> tmpl.substitute(locals())
'Hi <img src="bob.jpg">!\n<a href="Attack!&quot;&gt;"><i>Homepage</i></a>'

It also adds a couple handy builtins:

html_quote(value): HTML quotes the value. Turns all unicode values into character references,
so it always returns ASCII text. Also it calls str(value) or unicode(value), so you can do
things like html_quote(1).

url(value): Does URL quoting, similar to html_quote().

attr(**kw): Inserts attributes. Use like:

<div {{attr(width=width, class_=div_class)}}>

Then it’ll put in something like width="{{width}}" class={{div_class}}. Any at-
tribute with a value of None is left out entirely.

1.10.7 Extending Tempita

It’s not really meant for extension. Instead you should just write Python functions and classes that do what you want,
and use them in the template. You can either add the namespace to the constructor, or extend default_namespace
in your own subclass.

The extension that HTMLTemplate uses is to subclass and override the _repr(value, pos) function. This is
called on each object just before inserting it in the template.

Two other methods you might want to look at are _eval(code, ns, pos) and _exec(code, ns, pos),
which evaluate and execute expressions and statements. You could probably make this language safe with appropriate
implementations of those methods.

1.10.8 Command-line Use

There’s also a command-line version of the program. In Python 2.5+ you can run python -m tempita; in previ-
ous versions you must run python path/to/tempita/__init__.py.

The usage:

1.10. Tempita Templating Engine 87



pyrocore Documentation, Release 0.6.1

Usage: __init__.py [OPTIONS] TEMPLATE arg=value

Use py:arg=value to set a Python value; otherwise all values are
strings.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-o FILENAME, --output=FILENAME

File to write output to (default stdout)
--html Use HTML style filling (including automatic HTML

quoting)
--env Put the environment in as top-level variables

So you can use it like:

$ python -m tempita --html mytemplate.tmpl \
> var1="$var1" var2="$var2" > mytemplate.html

1.10.9 Still To Do

• Currently nested structures in for loop assignments don’t work, like for (a, b), c in x. They should.

• There’s no way to handle exceptions, except in your py: code. I’m not sure what there should be, if anything.

• Probably I should try to dedent py: code.

• There should be some way of calling a function with a chunk of the template. Maybe like:

{{call expr}}
template code...

{{endcall}}

That would mean {{expr(result_of_template_code)}}. But maybe there should be another as-
signment form too, if you don’t want to immediately put the output in the code ({{x = call}}...
{{endcall}}?). For now defs could be used for this, like:

{{def something}}
template code...

{{enddef}}
{{expr(something())}}

1.10.10 News

0.5

• Python 3 compatible.

• Fixed bug where file-relative filenames wouldn’t work well.

• Fixed the stripping of empty lines.

88 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

0.4

• Added a line_offset constructor argument, which can be used to adjust the line numbers reported in error
messages (e.g., if a template is embedded in a file).

• Allow non-dictionary namespace objects (with tmpl.substitute(namespace) (in Python 2.5+).

• Instead of defining __name__ in template namespaces (which has special rules, and must be a module name)
the template name is put into __template_name__. This became important in Python 2.5.

• Fix some issues with r

0.3

• Added {{inherit}} and {{def}} for doing template inheritance.

• Make error message annotation slightly more robust.

• Fix whitespace stripping for the beginning and end of lines.

0.2

• Added html_quote to default functions provided in HTMLTemplate.

• HTML literals have an .__html__() method, and the presence of that method is used to determine if values
need to be quoted in HTMLTemplate.

1.11 References

1.11.1 PyroScope CLI Tools Usage

This section is automatically generated and shows the options available in the development version of the code (git
HEAD). See User’s Manual for more details on how to use these commands.

• chtor

• hashcheck

• lstor

• mktor

• pyroadmin

• pyrotorque

• rtcontrol

• rtevent

• rtmv

• rtsweep

• rtxmlrpc

1.11. References 89



pyrocore Documentation, Release 0.6.1

Note: The help output presented here applies to version 0.6.1.dev20180524 of the tools.

chtor

Usage: chtor [options] <metafile>...

Change attributes of a bittorrent metafile.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes
-n, --dry-run don't write changes to disk, just tell what would happen
-V, --no-skip do not skip broken metafiles that fail the integrity check
-o PATH, --output-directory=PATH

optional output directory for the modified metafile(s)
-p, --make-private make torrent private (DHT/PEX disabled)
-P, --make-public make torrent public (DHT/PEX enabled)
-s KEY=VAL [-s ...], --set=KEY=VAL [-s ...]

set a specific key to the given value; omit the '=' to delete
→˓a key
-r KEYcREGEXcSUBSTc [-r ...], --regex=KEYcREGEXcSUBSTc [-r ...]

replace pattern in a specific key by the given substitution
-C, --clean remove all non-standard data from metafile outside the info

→˓dict
-A, --clean-all remove all non-standard data from metafile including inside

→˓the info dict
-X, --clean-xseed like --clean-all, but keep libtorrent resume information
-R, --clean-rtorrent remove all rTorrent session data from metafile
-H DATAPATH, --hashed=DATAPATH, --fast-resume=DATAPATH

add libtorrent fast-resume information (use {} in place of
→˓the torrent's name in DATAPATH)
-a URL, --reannounce=URL

set a new announce URL, but only if the old announce URL
→˓matches the new one
--reannounce-all=URL set a new announce URL on ALL given metafiles
--no-ssl force announce URL to 'http'
--no-cross-seed when using --reannounce-all, do not add a non-standard field

→˓to the info dict ensuring unique info hashes
--comment=TEXT set a new comment (an empty value deletes it)
--bump-date set the creation date to right now
--no-date remove the 'creation date' field

90 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

hashcheck

Usage: hashcheck [options] <metafile> [<data-dir-or-file>]

Check a bittorrent metafile.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes

lstor

Usage: lstor [options] <metafile>...

List contents of a bittorrent metafile.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--reveal show full announce URL including keys
--raw print the metafile's raw content in all detail
-V, --skip-validation

show broken metafiles with an invalid structure
-o KEY,KEY1.KEY2,..., --output=KEY,KEY1.KEY2,...

select fields to print, output is separated by TABs; note
→˓that __file__ is the path to the metafile,

__hash__ is the info hash, and __size__ is the data size in
→˓bytes

mktor

Usage: mktor [options] <dir-or-file> <tracker-url-or-alias>... | <magnet-uri>

Create a bittorrent metafile.

If passed a magnet URI as the only argument, a metafile is created
in the directory specified via the configuration value 'magnet_watch',
loadable by rTorrent. Which means you can register 'mktor' as a magnet:
URL handler in Firefox.

Options:
--version show program's version number and exit

(continues on next page)

1.11. References 91



pyrocore Documentation, Release 0.6.1

(continued from previous page)

-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes
-p, --private disallow DHT and PEX
--no-date leave out creation date
-o PATH, --output-filename=PATH

optional file name (or target directory) for the metafile
-r NAME, --root-name=NAME

optional root name (default is basename of the data path)
-x PATTERN [-x ...], --exclude=PATTERN [-x ...]

exclude files matching a glob pattern from hashing
--comment=TEXT optional human-readable comment
-s KEY=VAL [-s ...], --set=KEY=VAL [-s ...]

set a specific key to the given value; omit the '=' to delete
→˓a key
--no-cross-seed do not automatically add a field to the info dict ensuring

→˓unique info hashes
-X LABEL, --cross-seed=LABEL

set additional explicit label for cross-seeding (changes info
→˓hash, use '@entropy' to randomize it)
-H, --hashed, --fast-resume

create second metafile containing libtorrent fast-resume
→˓information

pyroadmin

Usage: pyroadmin [options]

Support for administrative tasks.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes
--create-config create default configuration
--remove-all-rc-files

write new versions of BOTH .rc and .rc.default files, and
→˓remove stale ones
--dump-config pretty-print configuration including all defaults
--create-import=GLOB-PATTERN

create import file for a '.d' directory
--dump-rc pretty-print dynamic commands defined in 'rtorrent.rc'

(continues on next page)

92 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

-o KEY,KEY1.KEY2=DEFAULT,..., --output=KEY,KEY1.KEY2=DEFAULT,...
select fields to print, output is separated by TABs; default

→˓values can be provided after the key
--reveal show config internals and full announce URL including keys
--screenlet create screenlet stub

pyrotorque

Usage: pyrotorque [options]

rTorrent queue manager & daemon.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes
-n, --dry-run advise jobs not to do any real work, just tell what would

→˓happen
--no-fork, --fg Don't fork into background (stay in foreground and log to

→˓console)
--stop Stop running daemon
--restart Stop running daemon, then fork into background
-?, --status Check daemon status
--pid-file=PATH file holding the process ID of the daemon, when running in

→˓background
--guard-file=PATH guard file for the process watchdog

rtcontrol

Usage: rtcontrol [options] <filter>...

Control and inspect rTorrent from the command line.

Filter expressions take the form "<field>=<value>", and all expressions must
be met (AND). If a field name is omitted, "name" is assumed. You can also use
uppercase OR to build a list of alternative conditions.

For numeric fields, a leading "+" means greater than, a leading "-" means less
than. For string fields, the value is a glob pattern (*, ?, [a-z], [!a-z]), or
a regex match enclosed by slashes. All string comparisons are case-ignoring.
Multiple values separated by a comma indicate several possible choices (OR).
"!" in front of a filter value negates it (NOT).

See https://pyrocore.readthedocs.io/en/latest/usage.html#rtcontrol for more.

Examples:

(continues on next page)

1.11. References 93



pyrocore Documentation, Release 0.6.1

(continued from previous page)

- All 1:1 seeds ratio=+1
- All active torrents xfer=+0
- All seeding torrents up=+0
- Slow torrents down=+0 down=-5k
- Older than 2 weeks completed=+2w
- Big stuff size=+4g
- 1:1 seeds not on NAS ratio=+1 'realpath=!/mnt/*'
- Music kind=flac,mp3

Use --help to get a list of all options.
Use --help-fields to list all fields and their description.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes
--help-fields show available fields and their description
-n, --dry-run don't commit changes, just tell what would happen
--detach run the process in the background
-i, --interactive interactive mode (prompt before changing things)
--yes positively answer all prompts (e.g. --delete --yes)
-S, --shell escape output following shell rules
-0, --nul, --print0 use a NUL character instead of a linebreak after items
-c, --column-headers print column headers
-+, --stats add sum / avg / median of numerical fields
--summary print only statistical summary, without the items
--json dump all items as JSON (use '-o f1,f2,...' to specify fields)
-o FORMAT, --output-format=FORMAT

specify display format (use '-o-' to disable item display)
-O FILE, --output-template=FILE

pass control of output formatting to the specified template
-s [-]FIELD[,...] [-s...], --sort-fields=[-]FIELD[,...] [-s...]

fields used for sorting, descending if prefixed with a '-'; '-
→˓s*' uses output field list
-r, --reverse-sort reverse the sort order
-A MODE [-A...], --anneal=MODE [-A...]

modify result set using some pre-defined methods
-/ [N-]M, --select=[N-]M

select result subset by item position (counting from 1)
-V, --view-only show search result only in default ncurses view
--to-view=NAME, --to=NAME

show search result only in named ncurses view
--append-view, --append

APPEND search results to ncurses view (modifies -V and --to-
→˓view behaviour)
--tee-view, --tee ADDITIONALLY show search results in ncurses view (modifies -V

→˓and --to-view behaviour)
--from-view=NAME, --from=NAME

select only items that are on view NAME (NAME can be an info
→˓hash to quickly select a single item)

(continues on next page)

94 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

-M NAME, --modify-view=NAME
get items from given view and write result back to it (short-

→˓cut to combine --from-view and --to-view)
-Q LEVEL, --fast-query=LEVEL

enable query optimization (=: use config; 0: off; 1: safe; 2:
→˓danger seeker) [=]
--call=CMD call an OS command pattern in the shell
--spawn=CMD [--spawn ...]

execute OS command pattern(s) directly
--start start torrent
--close, --stop stop torrent
-H, --hash-check hash-check torrent (implies -i)
--delete remove torrent from client (implies -i)
--purge, --delete-partial

delete PARTIAL data files and remove torrent from client
→˓(implies -i)
--cull, --exterminate, --delete-all

delete ALL data files and remove torrent from client (implies
→˓-i)
-T NAME, --throttle=NAME

assign to named throttle group (NULL=unlimited, NONE=global)
→˓(implies -i)
--tag="TAG +TAG -TAG..."

add or remove tag(s)
--custom=KEY=VALUE set value of 'custom_KEY' field (KEY might also be 1..5)
--exec=CMD, --xmlrpc=CMD

execute XMLRPC command pattern (implies -i)
--ignore=0|1 set 'ignore commands' status on torrent
--prio=0|1|2|3 set priority of torrent
-F, --flush flush changes immediately (save session data)

Fields are:
active last time a peer was connected
alias tracker alias or domain
completed time download was finished
custom_KEY named rTorrent custom attribute, e.g. 'custom_completion_

→˓target'
directory directory containing download data
done completion in percent
down download rate
files list of files in this item
fno number of files in this item
hash info hash
is_active download active?
is_complete download complete?
is_ghost has no data file or directory?
is_ignored ignore commands?
is_multi_file single- or multi-file download?
is_open download open?
is_private private flag set (no DHT/PEX)?
kind ALL kinds of files in this item (the same as kind_0)
kind_N file types that contribute at least N% to the item's total

→˓size
last_xfer last time data was transferred
leechtime time taken from start to completion
loaded time metafile was loaded
message current tracker message

(continues on next page)

1.11. References 95



pyrocore Documentation, Release 0.6.1

(continued from previous page)

metafile path to torrent file
name name (file or root directory)
path path to download data
prio priority (0=off, 1=low, 2=normal, 3=high)
ratio normalized ratio (1:1 = 1.0)
realpath real path to download data
seedtime total seeding time after completion
sessionfile path to session file
size data size
started time download was FIRST started
stopped time download was last stopped or paused
tagged has certain tags? (not related to the 'tagged' view)
throttle throttle group name (NULL=unlimited, NONE=global)
tracker first in the list of announce URLs
traits automatic classification of this item (audio, video, tv,

→˓movie, etc.)
up upload rate
uploaded amount of uploaded data
views views this item is attached to
xfer transfer rate

Format specifiers are:
delta Format a UNIX timestamp to a delta (relative to now).
duration Format a duration value in seconds to a readable form.
iso Format a UNIX timestamp to an ISO datetime string.
json JSON serialization.
mtime Modification time of a path.
pathbase Base name of a path.
pathdir Directory containing the given path.
pathext Extension of a path (including the '.').
pathname Base name of a path, without its extension.
pc Scale a ratio value to percent.
raw Switch off the default field formatter.
strip Strip leading and trailing whitespace.
subst Replace regex with string.
sz Format a byte sized value.

Append format specifiers using a '.' to field names in '-o' lists,
e.g. 'size.sz' or 'completed.raw.delta'.

rtevent

Usage: rtevent [options] <event> <infohash> [<args>...]

Handle rTorrent events.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read

(continues on next page)

96 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

(continued from previous page)

-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]
override configuration attributes

--no-fork, --fg Don't fork into background (stay in foreground, default for
→˓terminal use)

rtmv

Usage: rtmv [options] <source>... <target>

Move data actively seeded in rTorrent.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes
-n, --dry-run don't move data, just tell what would happen
-F, --force-incomplete

force a move of incomplete data

rtsweep

Usage: rtsweep [options] <space requirement>|SHOW

Manage disk space by deleting items loaded into rTorrent, including their data,
following configured rules that define an order of what to remove first.

The required space is passed as the first argument, either in bytes or
qualified with a unit character (K=KiB, M=MiB, G=GiB). Alternatively, you can
pass a metafile path, with the requirement calculated from its content size.

Use "show" instead to list the active rules, ordered by their priority.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes
-n, --dry-run do not remove anything, just tell what would happen
-p PATH, --path=PATH path into the filesystem to sweep (else the default download

→˓location)

(continues on next page)

1.11. References 97



pyrocore Documentation, Release 0.6.1

(continued from previous page)

-r RULESET [-r ...], --rules=RULESET [-r ...]
name the ruleset(s) to use, instead of the default ones

rtxmlrpc

Usage: rtxmlrpc [options] <method> <args>... |
-i <commands>... | -i @<filename> | -i @- |
--session <session-file>... | --session <directory> |
--session @<filename-list> | --session @-

Perform raw rTorrent XMLRPC calls, like "rtxmlrpc throttle.global_up.max_rate".
To enter a XMLRPC REPL, pass no arguments at all.

Start arguments with "+" or "-" to indicate they're numbers (type i4 or i8).
Use "[1,2,..." for arrays. Use "@" to indicate binary data, which can be
followed by a file path (e.g. "@/path/to/file"), a URL (https, http, ftp,
and file are supported), or '-' to read from stdin.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-q, --quiet omit informational logging
-v, --verbose increase informational logging
--debug always show stack-traces for errors
--cron run in cron mode (with different logging configuration)
--config-dir=DIR configuration directory [~/.pyroscope]
--config-file=PATH additional config file(s) to read
-D KEY=VAL [-D ...], --define=KEY=VAL [-D ...]

override configuration attributes
-r, --repr show Python pretty-printed response
-x, --xml show XML response
-i, --as-import execute each argument as a private command using 'import'
--session, --restore restore session state from .rtorrent session file(s)

1.11.2 rTorrent XMLRPC

See the Commands Reference in the rTorrent Handbook for a list of available commands and what they do. The
Scripting Guide explains how all these fit together.

1.11.3 XMLRPC Migration

The syntax of XMLRPC commands changed with rTorrent version 0.8.9, and continues to change. The old command
names and behavior were replaced with aliases and marked for deprecation, so they still work for now, but don’t rely
on that and use the new names instead.

See XMLRPC Migration in the GitHub wiki for details.

1.11.4 Books & Other Knowledge Sources

This and related documentation cannot teach all you need to know in order to run a torrent client and manage the
server it is installed on.

98 Chapter 1. Contents of This Manual

https://rtorrent-docs.readthedocs.io/en/latest/cmd-ref.html
https://rtorrent-docs.readthedocs.io/en/latest/scripting.html
https://github.com/rakshasa/rtorrent/wiki/RPC-Migration-0.9


pyrocore Documentation, Release 0.6.1

So here are a few references to either books or web resources that help you to improve your basic know-how, in case
you have trouble following some parts of the docs.

Linux / CLI / Administration

• The Debian Administrator’s Handbook

• The Linux Command Line

• The Art of Command Line

• Ansible Documentation

Python

• The Hitchhiker’s Guide to Python

• Free Python Books

1.11.5 External Links

• User Mailing List

• The rTorrent and libtorrent projects

• rTorrent Community Wiki and the rTorrent Handbook

• Open HUB

• free(code)

• Bintray

• pyrobase

1.11.6 BitTorrent Protocol

Wikipedia:

• Protocol

• bencode

BitTorrent standards:

• Index of BitTorrent Enhancement Proposals

1.12 License

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/> 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

1.12. License 99

https://debian-handbook.info/browse/stable/
http://linuxcommand.org/tlcl.php
https://github.com/jlevy/the-art-of-command-line#the-art-of-command-line
https://docs.ansible.com/#ansible-documentation
http://docs.python-guide.org/
https://github.com/TechBookHunter/Free-Python-Books#free-python-books
http://groups.google.com/group/pyroscope-users
https://github.com/rakshasa/rtorrent
https://github.com/rakshasa/libtorrent
https://github.com/rtorrent-community/rtorrent-community.github.io/wiki
http://rtorrent-docs.rtfd.io/
https://www.openhub.net/p/pyroscope/
http://freecode.com/projects/pyrocore
https://bintray.com/pkg/show/general/pyroscope/rtorrent-ps/rtorrent-ps
https://github.com/pyroscope/pyrobase/wiki
http://en.wikipedia.org/wiki/BitTorrent_(protocol)
http://en.wikipedia.org/wiki/Bencode
http://www.bittorrent.org/beps/bep_0000.html
http://fsf.org/


pyrocore Documentation, Release 0.6.1

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software–to make sure
the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors
of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to any
such program or work, and a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

100 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically

1.12. License 101



pyrocore Documentation, Release 0.6.1

terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives
a license from the original licensor to copy, distribute or modify the Program subject to these terms and condi-
tions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geo-
graphical distribution limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of
this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and “any later version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE

102 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

{description} Copyright (C) {year} {fullname}

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright dis-
claimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

{signature of Ty Coon}, 1 April 1989 Ty Coon, President of Vice

1.12. License 103



pyrocore Documentation, Release 0.6.1

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If
this is what you want to do, use the GNU Lesser General Public License instead of this License.

1.13 Experimental Features

Warning: The features described here are unfinished and in an alpha or beta stage.

1.13.1 Query Optimization

You can provide the --fast-query option of rtcontrol to set a level of optimization to use when querying
rTorrent for items. The default for that option is set via the fast_query config parameter, and is 0 if not changed.
That means optimization is normally off, and can be activated via -Q1. It is recommended to keep it that way for now,
and use -Q1 explicitly in scripts and other background processing to reduce the load they generate. Only activating it
in scripts usually means the filters used don’t change that much, i.e. you can be pretty sure the optimization does what
you expect it to do.

Level 1 is less aggressive and safe by definition (i.e. produces correct results in all cases, unless there’s a bug), while
-Q2 is highly experimental and in some circumstances likely produces results that are too small or empty.

Optimization works by giving a pre-filter condition to rTorrent, to reduce the overhead involved in sending items
over XMLRPC and processing them, only to be then discarded in the rtcontrol filter machinery. That pre-filter
evaluation needs features of rTorrent-PS 1.1 or later, and will produce errors when used with anything else.

This goal of reducing the number of items sent to rtcontrol is best achieved if you put a highly selective condition
first in a series of conditions combined by AND. For cron-type jobs, this can often be achieved by looking at recent
items only – older items should already be processed by previous runs. Even a very lenient window like “last week”
drastically reduces items that need to be processed.

Consider this example:

$ rtcontrol loaded=-6w is_ignored=0 -o- -v -Q0
DEBUG Matcher is: loaded=-6w is_ignored=no
DEBUG Got 131 items with 20 attributes ...
INFO Filtered 13 out of 131 torrents.
DEBUG XMLRPC stats: 25 req, out 5.6 KiB [1.4 KiB max], in 104.9 KiB [101.5 KiB
→˓max], ...
INFO Total time: 0.056 seconds.

$ rtcontrol loaded=-6w is_ignored=0 -o- -v -Q1
INFO !!! pre-filter: greater=value=$d.custom=tm_loaded,value=1488920876
DEBUG Got 17 items with 20 attributes ...
INFO Filtered 13 out of 131 torrents.
DEBUG XMLRPC stats: 25 req, out 5.7 KiB [1.5 KiB max], in 16.6 KiB [13.2 KiB max],
→˓...
INFO Total time: 0.028 seconds.

You can see that the 2nd command executes faster (the effect is larger with more overall items), and only looks at 17
items to select the final 13 ones, while with -Q0 all 131 items need to be looked at, and thus transferred via XMLRPC.
That means 105 KiB instead of only 16.6 KiB need to be serialized, read, and parsed again.

Putting the right condition first is quite important, as you can see when the conditions are swapped and the less selective
one is used for the pre-filter:

104 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

$ rtcontrol is_ignored=0 loaded=-6w -o- -v -Q1
INFO !!! pre-filter: equal=d.ignore_commands=,value=0
DEBUG Got 117 items with 20 attributes ...

Be careful when mixing --anneal and --fast-query, since most of the post-processing steps also look at
deselected items, and produce unexpected results if they are missing due to pre-filtering. Put another way, always
include -Q0 when you use --anneal, to be on the safe side.

1.13.2 Connecting via SSH

Starting with version 0.4.1, you can use URLs of the form

scgi+ssh://[«user»@]«host»[:«port»]«/path/to/unix/domain/socket»

to connect securely to a remote rTorrent instance. For this to work, the following preconditions have to be met:

• the provided account has to have full permissions (rwx) on the given socket.

• you have to use either public key authentication via authorized_keys, or a SSH agent that holds your
password.

• the remote host needs to have the socat executable available (on Debian/Ubuntu, install the socat package).

You also need to extend the rtorrent.rc of the remote instance with this snippet:

# COMMAND: Return startup time (can be used to calculate uptime)
method.insert = startup_time,value|const,$system.time=

For example, the following queries the remote instance ID using rtxmlrpc:

rtxmlrpc -v -Dscgi_url=scgi+ssh://user@example.com/var/torrent/.scgi_local session.
→˓name

This typically takes several seconds due to the necessary authentication.

1.13.3 Using the Monitoring Web Service

Overview

Note: This feature is not finished and should not be considered stable at this time (i.e. it might change drastically).

The monitoring subsystem is an optional part of pyrotorque and includes a web service that creates the monitoring
pages which can be viewed in your browser. There is a live view that continuously updates current performance
indicators of rTorrent and the host it runs on, something similar to this:

What can you see here?

• rTorrent and host uptimes.

• rTorrent upload and download activity.

• number of rTorrent items in total (), active (), having a message (), complete (XXX), incomplete (), seeding (),
downloading (). started (), stopped ().

• and key host performance indicators.

1.13. Experimental Features 105



pyrocore Documentation, Release 0.6.1

Fig. 1: Screenshot of the Monitoring View

The web interface follows responsive web design (RWD) principles, which means it’ll adapt to different devices and
their display size.

(This is not yet implemented. . . ) Also, the StatsArchiver job of the pyrotorque demon writes a lot of statistical
data to RRD archives (round robin database) in 1 minute intervals. See http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html
for the theory behind RRD, and the standard implementation used in a lot of systems.

Installation & Configuration

As previously mentioned, monitoring is an optional part of pyrotorque, so first see rTorrent Queue Manager on
how to set it up in case you didn’t do that already. After pyrotorque is successfully running, follow these additional
steps to activate the web server.

A few additional Python libraries and external CSS/Javascript resources need to be installed, which are not part of the
core distribution.

1. Install current code and dependencies:

~/.local/pyroscope/update-to-head.sh
~/.local/pyroscope/bin/pip install -r ~/.local/pyroscope/requirements-torque.txt

2. Activate the web server option by adding this to your ~/.pyroscope/torque.ini:

httpd.active = True

3. Download resources to ~/.pyroscope/htdocs:

pyroadmin --create-config

4. Finally, restart the demon:

106 Chapter 1. Contents of This Manual

https://en.wikipedia.org/wiki/Responsive_web_design
http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html


pyrocore Documentation, Release 0.6.1

pyrotorque --cron --restart
# use "pyrotorque --fg --restart -v" instead, in case something doesn't work,
# so you can directly read the log

If you didn’t change the defaults, the web interface is now available using the URL http://localhost:8042/, which will
show you something similar to the screen shot further above,

Additional Configuration Options

As with other config files, ~/.pyroscope/torque.ini.default lists all the available options and a short
description. The following just lists those that are quite often changed from the defaults.

httpd.waitress.host The address the web server listens on. The default is 127.0.0.1 (i.e. localhost),
and can be changed to 0.0.0.0 to listen to any interface. Note that the latter is only safe in your home LAN,
behind a firewall or NAT. Add a reverse proxy to your Apache/nginx/. . . for exposing the web service to the
internet, ideally adding password protection and using SSL.

httpd.waitress.port TCP port the web server listens on, default is 8042.

httpd.json.disk_usage_path Path used to get disk used/total, this can also be a list of paths to different
partitions, separated by :. The default is your home directory ~.

Sensors

The following values are gathered. Most (all?) of them are also available per tracker (and per media type?).

Item Numbers d.total, d.started, d.stopped, d.complete, d.incomplete, d.seeding, d.
leeching, d.active, d.messages

These are the associated view sizes; could be sampled more often, and the average values taken.

Item Size d.size_bytes, d.left_bytes, d.size_files

Traffic d.up_rate, d.down_rate, d.skip_rate

Resources open_sockets, cputime, pcpu, pmem, sz, rsz, vsz

See man ps for most of these.

Also, the usual machine statistics (CPU load, disk usage and I/O, network traffic) are sampled (by collectd, or
using collectd plugins, or some system stats package?).

Later Extensions

These are probably not sampled that often, or we need to define an extra view to allow efficient sampling.

Ratios As histogram counters?

Events event_closed, . . .

Counters for all event.download.* events.

Peers peers_total, peers_encrypted, peers_incoming, peers_obfuscated,
peers_preferred, peers_snubbed, peers_unwanted

Files . . .

With some patches compiled into rTorrent, the additional values network.http.open, and network.
open_files are available.

1.13. Experimental Features 107

http://localhost:8042/


pyrocore Documentation, Release 0.6.1

1.13.4 Event Handling

TODO – see the old docs for anything not yet moved.

1.13.5 Queue Manager: Planned Features

These aren’t implemented yet. . .

ExecCommand (planned)

TODO pyrocore.torrent.jobs:ExecCommand runs an external command in a shell, i.e. it simply runs cron
jobs. The reasons for not using cron instead are these: 1. You can have all your rTorrent-related background processing
at one place, and the commands see the same environment as pyrotorque. 1. pyrotorque offers more flexible
scheduling, including the ability to run jobs at sub-minute intervals.

RemoteWatch (planned)

TODO pyrocore.torrent.watch:RemoteWatch polls a (S)FTP source for new .torrent files, creates a
local copy, and loads that into the client.

ItemPoller (planned)

TODO pyrocore.torrent.: maintains an updated copy of all rTorrent items, as a service for the other jobs.

ActionRule (planned)

TODO pyrocore.torrent.filter:ActionRule is rtcontrol in form of a house-keeping job, and using
this is way more efficient than an equivalent rtcontrol cron job; due to that, they can be run a lot more frequently.

TorrentMirror (planned)

TODO pyrocore.torrent.filter:TorrentMirror allows you to transfer a torrent’s data from the local
client to other remote clients using a specified tracker (at the start, a locally running “bttrack”). In a nutshell, it allows
you to transfer any filtered item automatically to a remote location via bittorrent.

CompletionHandler (planned)

TODO pyrocore.torrent.: moves completed data to a target directory, according to flexible rules.

StatsArchiver (planned)

TODO pyrocore.torrent.: keeps a continuous archive of some statistical values (like bandwidth) so they can
later be rendered into graphs.

See RtorrentMonitoring for more details.

108 Chapter 1. Contents of This Manual

https://github.com/pyroscope/pyroscope/tree/wiki/


pyrocore Documentation, Release 0.6.1

1.14 API Documentation

This is the full pyrocore API documentation, generated from source.

1.14.1 Packages & Modules

pyrocore package

Python Torrent Tools Core Package.

Copyright (c) 2010 The PyroScope Project <pyroscope.project@gmail.com>

pyrocore.connect(config_dir=None, optional_config_files=None, cron_cfg=’cron’)
Initialize everything for interactive use.

Returns a ready-to-use RtorrentEngine object.

pyrocore.view(viewname=’default’, matcher=None, config_dir=None, optional_config_files=None,
cron_cfg=’cron’)

Helper for interactive / high-level API use.

Subpackages

pyrocore.daemon package

Background Daemon Package.

Copyright (c) 2012 The PyroScope Project <pyroscope.project@gmail.com>

Submodules

pyrocore.daemon.webapp module

rTorrent web apps.

Copyright (c) 2013 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.daemon.webapp.JsonController(**kwargs)
Bases: object

Controller for generating JSON data.

ERRORS_LOGGED = set([])

guarded(func, *args, **kwargs)
Call a function, return None on errors.

json_charts(req)
Return charting data.

json_engine(req)
Return torrent engine data.

class pyrocore.daemon.webapp.Router
Bases: object

URL router middleware.

1.14. API Documentation 109

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

See http://docs.webob.org/en/latest/do-it-yourself.html

ROUTES_RE = <_sre.SRE_Pattern object>

add_route(template, controller, **kwargs)
Add a route definition

controller can be either a controller instance, or the name of a callable that will be imported.

classmethod parse_route(template)
Parse a route definition, and return the compiled regex that matches it.

class pyrocore.daemon.webapp.StaticFolders(paths, fileapp=None, **kw)
Bases: object

An application that serves up the files in a list of given directories.

Non-existent paths are ignored. Pass a fileapp factory to change the default file serving app.

pyrocore.daemon.webapp.make_app(httpd_config)
Factory for the monitoring webapp.

pyrocore.daemon.webapp.module_test()
Quick test using. . .

python -m pyrocore.daemon.webapp

pyrocore.scripts package

Basic Command Line Scripts.

Copyright (c) 2009 The PyroScope Project <pyroscope.project@gmail.com>

Submodules

pyrocore.scripts.base module

Command Line Script Support.

Copyright (c) 2009, 2010 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.base.PromptDecorator(script_obj)
Bases: object

Decorator for interactive commands.

QUIT_RC = 75

add_options()
Add program options, must be called in script’s addOptions().

ask_bool(question, default=True)
Ask the user for Y)es / N)o / Q)uit.

If “Q” ist entered, this method will exit with RC=3. Else, the user’s choice is returned.

Note that the options –non-interactive and –defaults also influence the outcome.

quit()
Exit the program due to user’s choices.

110 Chapter 1. Contents of This Manual

http://docs.webob.org/en/latest/do-it-yourself.html
https://docs.python.org/2/library/functions.html#object
mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

class pyrocore.scripts.base.ScriptBase
Bases: object

Base class for command line interfaces.

ADDITIONAL_HELP = []

ARGS_HELP = '<log-base>...'

COPYRIGHT = 'Copyright (c) 2009 - 2018 Pyroscope Project'

LOGGING_CFG = '~/.pyroscope/logging.%s.ini'

STD_LOG_LEVEL = 20

VERSION = None

add_bool_option(*args, **kwargs)
Add a boolean option.

@keyword help: Option description.

add_options()
Add program options.

add_value_option(*args, **kwargs)
Add a value option.

@keyword dest: Destination attribute, derived from long option name if not given. @keyword action:
How to handle the option. @keyword help: Option description. @keyword default: If given, add this
value to the help string.

fatal(msg, exc=None)
Exit on a fatal error.

get_options()
Get program options.

handle_completion()
Handle shell completion stuff.

help_completion_options()
Return options of this command.

mainloop()
The main loop.

run()
The main program skeleton.

classmethod setup(cron_cfg=’cron’)
Set up the runtime environment.

class pyrocore.scripts.base.ScriptBaseWithConfig
Bases: pyrocore.scripts.base.ScriptBase

CLI tool with configuration support.

CONFIG_DIR_DEFAULT = '~/.pyroscope'

OPTIONAL_CFG_FILES = []

add_options()
Add configuration options.

1.14. API Documentation 111

https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

check_for_connection(maxpos=0)
Scan arguments for a @name one.

get_options()
Get program options.

pyrocore.scripts.chtor module

Metafile Editor.

Copyright (c) 2010 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.chtor.MetafileChanger
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Change attributes of a bittorrent metafile.

ARGS_HELP = '<metafile>...'

RT_RESUMT_KEYS = ('libtorrent_resume', 'log_callback', 'err_callback', 'rtorrent')

add_options()
Add program options.

mainloop()
The main loop.

pyrocore.scripts.chtor.replace_fields(meta, patterns)
Replace patterns in fields.

pyrocore.scripts.chtor.run()
The entry point.

pyrocore.scripts.hashcheck module

Metafile Checker.

Copyright (c) 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.hashcheck.MetafileChecker
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Check a bittorrent metafile.

ARGS_HELP = '<metafile> [<data-dir-or-file>]'

add_options()
Add program options.

mainloop()
The main loop.

pyrocore.scripts.hashcheck.run()
The entry point.

pyrocore.scripts.lstor module

Metafile Lister.

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

112 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com


pyrocore Documentation, Release 0.6.1

class pyrocore.scripts.lstor.MetafileLister
Bases: pyrocore.scripts.base.ScriptBase

List contents of a bittorrent metafile.

ARGS_HELP = '<metafile>...'

add_options()
Add program options.

mainloop()
The main loop.

pyrocore.scripts.lstor.run()
The entry point.

pyrocore.scripts.mktor module

Metafile Creator.

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.mktor.MetafileCreator
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Create a bittorrent metafile.

If passed a magnet URI as the only argument, a metafile is created in the directory specified via the configuration
value ‘magnet_watch’, loadable by rTorrent. Which means you can register ‘mktor’ as a magnet: URL handler
in Firefox.

ARGS_HELP = '<dir-or-file> <tracker-url-or-alias>... | <magnet-uri>'

ENTROPY_BITS = 512

add_options()
Add program options.

mainloop()
The main loop.

make_magnet_meta(magnet_uri)
Create a magnet-uri torrent.

pyrocore.scripts.mktor.run()
The entry point.

pyrocore.scripts.pyroadmin module

Administration Tool.

Copyright (c) 2010 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.pyroadmin.AdminTool
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Support for administrative tasks.

ARGS_HELP = u''

CONFIG_DIRS = [u'log', u'data', u'run', u'htdocs']

1.14. API Documentation 113

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com


pyrocore Documentation, Release 0.6.1

OPTIONAL_CFG_FILES = [u'torque.ini']

RC_CONTINUATION_THRESHOLD = 50

add_options()
Add program options.

download_resource(download_url, target, guard)
Helper to download and install external resources.

mainloop()
The main loop.

pyrocore.scripts.pyroadmin.run()
The entry point.

pyrocore.scripts.pyrotorque module

rTorrent queue manager & daemon.

Copyright (c) 2012 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.pyrotorque.RtorrentQueueManager
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

rTorrent queue manager & daemon.

ARGS_HELP = ''

OPTIONAL_CFG_FILES = ['torque.ini']

POLL_TIMEOUT = 1.0

add_options()
Add program options.

mainloop()
The main loop.

pyrocore.scripts.pyrotorque.run()
The entry point.

pyrocore.scripts.rtcontrol module

rTorrent Control.

Copyright (c) 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.rtcontrol.FieldStatistics(size)
Bases: object

Collect statistical values for the fields of a search result.

add(field, val)
Add a sample

average
Calculate average

class pyrocore.scripts.rtcontrol.RtorrentControl
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

114 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

Control and inspect rTorrent from the command line.

Filter expressions take the form “<field>=<value>”, and all expressions must be met (AND). If a field name is
omitted, “name” is assumed. You can also use uppercase OR to build a list of alternative conditions.

For numeric fields, a leading “+” means greater than, a leading “-” means less than. For string fields, the value
is a glob pattern (*, ?, [a-z], [!a-z]), or a regex match enclosed by slashes. All string comparisons are case-
ignoring. Multiple values separated by a comma indicate several possible choices (OR). “!” in front of a filter
value negates it (NOT).

See https://pyrocore.readthedocs.io/en/latest/usage.html#rtcontrol for more.

Examples:

• All 1:1 seeds ratio=+1

• All active torrents xfer=+0

• All seeding torrents up=+0

• Slow torrents down=+0 down=-5k

• Older than 2 weeks completed=+2w

• Big stuff size=+4g

• 1:1 seeds not on NAS ratio=+1 ‘realpath=!/mnt/*’

• Music kind=flac,mp3

ACTION_MODES = (Bunch(help='start torrent', name='start', options=('--start',)), Bunch(help='stop torrent', method='stop', name='close', options=('--close', '--stop')), Bunch(help='hash-check torrent', interactive=True, label='HASH', name='hash_check', options=('-H', '--hash-check')), Bunch(help='remove torrent from client', interactive=True, name='delete', options=('--delete',)), Bunch(help='delete PARTIAL data files and remove torrent from client', interactive=True, name='purge', options=('--purge', '--delete-partial')), Bunch(help='delete ALL data files and remove torrent from client', interactive=True, name='cull', options=('--cull', '--exterminate', '--delete-all')), Bunch(argshelp='NAME', help='assign to named throttle group (NULL=unlimited, NONE=global)', interactive=True, method='set_throttle', name='throttle', options=('-T', '--throttle')), Bunch(argshelp='"TAG +TAG -TAG..."', help='add or remove tag(s)', interactive=False, name='tag', options=('--tag',)), Bunch(argshelp='KEY=VALUE', help="set value of 'custom_KEY' field (KEY might also be 1..5)", interactive=False, label='SET_CUSTOM', method='set_custom', name='custom', options=('--custom',)), Bunch(argshelp='CMD', help='execute XMLRPC command pattern', interactive=True, label='EXEC', method='execute', name='exec', options=('--exec', '--xmlrpc')))

ADDITIONAL_HELP = ['', '', 'Use --help to get a list of all options.', 'Use --help-fields to list all fields and their description.']

ALTER_MODES = ('append', 'remove')

ARGS_HELP = '<filter>...'

FORMATTER_DEFAULTS = {'now': 1631572075.478669}

IGNORE_OPTIONS = ('0', '1')

PRIO_OPTIONS = ('0', '1', '2', '3')

add_options()
Add program options.

anneal(mode, matches, orig_matches)
Perform post-processing.

Return True when any changes were applied.

emit(item, defaults=None, stencil=None, to_log=False, item_formatter=None)
Print an item to stdout, or the log on INFO level.

format_item(item, defaults=None, stencil=None)
Format an item.

get_output_fields()
Get field names from output template.

help_completion_fields()
Return valid field names.

json_dump(data)
Dump result as JSON.

1.14. API Documentation 115

https://pyrocore.readthedocs.io/en/latest/usage.html#rtcontrol


pyrocore Documentation, Release 0.6.1

mainloop()
The main loop.

show_in_view(sourceview, matches, targetname=None)
Show search result in ncurses view.

validate_output_format(default_format)
Prepare output format for later use.

validate_sort_fields()
Take care of sorting.

pyrocore.scripts.rtcontrol.print_help_fields()
Print help about fields and field formatters.

pyrocore.scripts.rtcontrol.run()
The entry point.

pyrocore.scripts.rtevent module

Rtorrent event handler.

Copyright (c) 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.rtevent.RtorrentEventHandler
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Handle rTorrent events.

ARGS_HELP = '<event> <infohash> [<args>...]'

add_options()
Add program options.

mainloop()
The main loop.

pyrocore.scripts.rtevent.run()
The entry point.

pyrocore.scripts.rtmv module

Move seeding data.

Copyright (c) 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.rtmv.RtorrentMove
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Move data actively seeded in rTorrent.

ARGS_HELP = '<source>... <target>'

PREFETCH_FIELDS = ['hash', 'name', 'size', 'path', 'is_complete']

add_options()
Add program options.

guarded(call, *args)
Catch exceptions thrown by filesystem calls, and don’t really execute them in dry-run mode.

116 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com


pyrocore Documentation, Release 0.6.1

mainloop()
The main loop.

resolve_slashed(path)
Resolve symlinked directories if they end in a ‘/’, remove trailing ‘/’ otherwise.

pyrocore.scripts.rtmv.pretty_path(path)
Prettify path for logging.

pyrocore.scripts.rtmv.run()
The entry point.

pyrocore.scripts.rtsweep module

Rtorrent disk space management.

Copyright (c) 2018 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.rtsweep.RtorrentSweep
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Manage disk space by deleting items loaded into rTorrent, including their data, following configured rules that
define an order of what to remove first.

The required space is passed as the first argument, either in bytes or qualified with a unit character (K=KiB,
M=MiB, G=GiB). Alternatively, you can pass a metafile path, with the requirement calculated from its content
size.

Use “show” instead to list the active rules, ordered by their priority.

ARGS_HELP = '<space requirement>|SHOW'

add_options()
Add program options.

mainloop()
The main loop.

pyrocore.scripts.rtsweep.run()
The entry point.

pyrocore.scripts.rtxmlrpc module

Perform raw XMLRPC calls.

Copyright (c) 2010 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.scripts.rtxmlrpc.RtorrentXmlRpc
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Perform raw rTorrent XMLRPC calls, like “rtxmlrpc throttle.global_up.max_rate”. To enter a XMLRPC REPL,
pass no arguments at all.

Start arguments with “+” or “-” to indicate they’re numbers (type i4 or i8). Use “[1,2,. . . ” for arrays. Use “@”
to indicate binary data, which can be followed by a file path (e.g. “@/path/to/file”), a URL (https, http, ftp, and
file are supported), or ‘-’ to read from stdin.

ARGS_HELP = '<method> <args>... |\n -i <commands>... | -i @<filename> | -i @- |\n --session <session-file>... | --session <directory> |\n --session @<filename-list> | --session @-'

STD_LOG_LEVEL = 10

1.14. API Documentation 117

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com


pyrocore Documentation, Release 0.6.1

add_options()
Add program options.

cooked(raw_args)
Return interpreted / typed list of args.

do_command()
Call a single command with arguments.

do_import()
Handle import files or streams passed with ‘-i’.

do_repl()
REPL for rTorrent XMLRPC commands.

do_session()
Restore state from session files.

execute(proxy, method, args)
Execute given XMLRPC call.

mainloop()
The main loop.

open()
Open connection and return proxy.

repl_usage()
Print a short REPL usage summary.

pyrocore.scripts.rtxmlrpc.read_blob(arg)
Read a BLOB from given @arg.

pyrocore.scripts.rtxmlrpc.run()
The entry point.

pyrocore.torrent package

Torrent Backend Engines Package.

Copyright (c) 2010 The PyroScope Project <pyroscope.project@gmail.com>

Submodules

pyrocore.torrent.broom module

rTorrent Disk Space House-Keeping.

This is used in the rtsweep tool and the queue job of the pyrotoque daemon to free up disk space for new items,
by deleting old items in a controlled way using a configurable order.

Copyright (c) 2018 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.torrent.broom.DiskSpaceManager(config=None, rulesets=None)
Bases: object

Core implementation of rtsweep.

class pyrocore.torrent.broom.SweepRule(ruleset, name, prio, order, filter)
Bases: tuple

118 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

filter
Alias for field number 4

name
Alias for field number 1

order
Alias for field number 3

prio
Alias for field number 2

ruleset
Alias for field number 0

pyrocore.torrent.broom.parse_cond(text)
Parse a filter condition.

pyrocore.torrent.engine module

Torrent Engine Interface.

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.torrent.engine.ConstantField(valtype, name, doc, accessor=None,
matcher=None, formatter=None, en-
gine_name=None)

Bases: pyrocore.torrent.engine.ImmutableField

Read-only download item field with constant value.

class pyrocore.torrent.engine.DynamicField(valtype, name, doc, accessor=None,
matcher=None, formatter=None, en-
gine_name=None)

Bases: pyrocore.torrent.engine.ImmutableField

Read-only download item field with dynamic value.

class pyrocore.torrent.engine.FieldDefinition(valtype, name, doc, accessor=None,
matcher=None, formatter=None, en-
gine_name=None)

Bases: object

Download item field.

FIELDS = {u'active': <DynamicField(<type 'int'>, u'active', u'last time a peer was connected')>, u'alias': <ConstantField(<function map_announce2alias>, u'alias', u'tracker alias or domain')>, u'completed': <DynamicField(<type 'int'>, u'completed', u'time download was finished')>, u'directory': <OnDemandField(<function to_unicode>, u'directory', u'directory containing download data')>, u'done': <OnDemandField(<function percent>, u'done', u'completion in percent')>, u'down': <DynamicField(<type 'int'>, u'down', u'download rate')>, u'files': <OnDemandField(<type 'list'>, u'files', u'list of files in this item')>, u'fno': <OnDemandField(<type 'int'>, u'fno', u'number of files in this item')>, u'hash': <ConstantField(<type 'str'>, u'hash', u'info hash')>, u'is_active': <DynamicField(<type 'bool'>, u'is_active', u'download active?')>, u'is_complete': <DynamicField(<type 'bool'>, u'is_complete', u'download complete?')>, u'is_ghost': <DynamicField(<type 'bool'>, u'is_ghost', u'has no data file or directory?')>, u'is_ignored': <OnDemandField(<type 'bool'>, u'is_ignored', u'ignore commands?')>, u'is_multi_file': <OnDemandField(<type 'bool'>, u'is_multi_file', u'single- or multi-file download?')>, u'is_open': <DynamicField(<type 'bool'>, u'is_open', u'download open?')>, u'is_private': <ConstantField(<type 'bool'>, u'is_private', u'private flag set (no DHT/PEX)?')>, u'kind': <DynamicField(<type 'set'>, u'kind', u'ALL kinds of files in this item (the same as kind_0)')>, u'last_xfer': <DynamicField(<type 'int'>, u'last_xfer', u'last time data was transferred')>, u'leechtime': <DynamicField(<function untyped>, u'leechtime', u'time taken from start to completion')>, u'loaded': <DynamicField(<type 'int'>, u'loaded', u'time metafile was loaded')>, u'message': <OnDemandField(<function to_unicode>, u'message', u'current tracker message')>, u'metafile': <ConstantField(<function to_unicode>, u'metafile', u'path to torrent file')>, u'name': <ConstantField(<function to_unicode>, u'name', u'name (file or root directory)')>, u'path': <DynamicField(<function to_unicode>, u'path', u'path to download data')>, u'prio': <OnDemandField(<type 'int'>, u'prio', u'priority (0=off, 1=low, 2=normal, 3=high)')>, u'ratio': <DynamicField(<function ratio_float>, u'ratio', u'normalized ratio (1:1 = 1.0)')>, u'realpath': <DynamicField(<function to_unicode>, u'realpath', u'real path to download data')>, u'seedtime': <DynamicField(<function untyped>, u'seedtime', u'total seeding time after completion')>, u'sessionfile': <ConstantField(<function to_unicode>, u'sessionfile', u'path to session file')>, u'size': <ConstantField(<type 'int'>, u'size', u'data size')>, u'started': <DynamicField(<type 'int'>, u'started', u'time download was FIRST started')>, u'stopped': <DynamicField(<type 'int'>, u'stopped', u'time download was last stopped or paused')>, u'tagged': <DynamicField(<type 'set'>, u'tagged', u"has certain tags? (not related to the 'tagged' view)")>, u'throttle': <OnDemandField(<type 'str'>, u'throttle', u'throttle group name (NULL=unlimited, NONE=global)')>, u'tracker': <ConstantField(<type 'str'>, u'tracker', u'first in the list of announce URLs')>, u'traits': <DynamicField(<type 'list'>, u'traits', u'automatic classification of this item (audio, video, tv, movie, etc.)')>, u'up': <DynamicField(<type 'int'>, u'up', u'upload rate')>, u'uploaded': <OnDemandField(<type 'int'>, u'uploaded', u'amount of uploaded data')>, u'views': <OnDemandField(<type 'set'>, u'views', u'views this item is attached to')>, u'xfer': <DynamicField(<type 'int'>, u'xfer', u'transfer rate')>}

classmethod lookup(name)
Try to find field C{name}.

@return: Field descriptions, see C{matching.ConditionParser} for details.

class pyrocore.torrent.engine.ImmutableField(valtype, name, doc, accessor=None,
matcher=None, formatter=None, en-
gine_name=None)

Bases: pyrocore.torrent.engine.FieldDefinition

Read-only download item field.

class pyrocore.torrent.engine.MutableField(valtype, name, doc, accessor=None,
matcher=None, formatter=None, en-
gine_name=None)

Bases: pyrocore.torrent.engine.FieldDefinition

1.14. API Documentation 119

mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

Writable download item field

class pyrocore.torrent.engine.OnDemandField(valtype, name, doc, accessor=None,
matcher=None, formatter=None, en-
gine_name=None)

Bases: pyrocore.torrent.engine.DynamicField

Field that is fetched on first access only.

class pyrocore.torrent.engine.TorrentEngine
Bases: object

A torrent backend.

group_by(fields, items=None)
Returns a dict of lists of items, grouped by the given fields.

fields can be a string (one field) or an iterable of field names.

items(view=None, prefetch=None, cache=True)
Get list of download items.

load_config(namespace=None, rcfile=None)
Load engine configuration file.

log(msg)
Log a message in the torrent client.

open()
Open connection.

show(items, view=None)
Visualize a set of items (search result), and return the view name.

view(viewname=u’default’, matcher=None)
Get list of download items.

class pyrocore.torrent.engine.TorrentProxy
Bases: object

A single download item.

active
last time a peer was connected

classmethod add_custom_fields(*args, **kw)
Add any custom fields defined in the configuration.

classmethod add_manifold_attribute(name)
Register a manifold engine attribute.

@return: field definition object, or None if “name” isn’t a manifold attribute.

alias
tracker alias or domain

announce_urls(default=[])
Get a list of all announce URLs.

completed
time download was finished

datapath()
Get an item’s data path.

120 Chapter 1. Contents of This Manual

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

delete()
Remove torrent from client.

directory
directory containing download data

done
completion in percent

down
download rate

fetch(name, engine_name=None)
Get a field on demand.

“engine_name” is the internal name of the client engine.

files
list of files in this item

flush()
Write volatile data to disk.

fno
number of files in this item

hash
info hash

hash_check()
Hash check a download.

ignore(flag)
Set ignore status.

is_active
download active?

is_complete
download complete?

is_ghost
Shining a light on the naming and paths mess:

hash=xxx for i in d.name d.base_filename d.base_path d.directory d.directory_base d.is_multi_file; do
echo -n “$(printf ‘%20.20s ‘ $i)”; rtxmlrpc $i $hash done

Basics:

• d.base_filename is always the basename of d.base_path

• d.directory_base and d.directory are always the same

• d.base_filename and d.base_path are empty on closed items, after a restart, i.e. not too useful
(since 0.9.1 or so)

Behaviour of d.directory.set + d.directory_base.set (tested with 0.9.4):

• d.base_path always remains unchanged, and item gets closed

• d.start sets d.base_path if resume data ok

• single:

– d.directory[_base].set → d.name NEVER appended (only in d.base_path)

1.14. API Documentation 121



pyrocore Documentation, Release 0.6.1

– after start, d.base_path := d.directory/d.name

• multi:

– d.directory.set → d.name is appended

– d.directory_base.set → d.name is NOT appended (i.e. item renamed to last path part)

– after start, d.base_path := d.directory

Making sense of it (trying to at least):

• d.directory is always a directory (thus, single items auto-append d.name in d.base_path and cannot
be renamed)

• d.directory_base.set means set path PLUS basename together for a multi item (thus allowing a
rename)

• only d.directory.set behaves consistently for single+multi, regarding the end result in d.base_path

is_ignored
ignore commands?

is_multi_file
single- or multi-file download?

is_open
download open?

is_private
private flag set (no DHT/PEX)?

kind
ALL kinds of files in this item (the same as kind_0)

last_xfer
last time data was transferred

leechtime
time taken from start to completion

loaded
time metafile was loaded

message
current tracker message

metafile
path to torrent file

name

path
path to download data

prio
priority (0=off, 1=low, 2=normal, 3=high)

ratio
normalized ratio (1:1 = 1.0)

realpath
real path to download data

seedtime
total seeding time after completion

122 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

sessionfile
path to session file

set_custom(key, value=None)
Set a custom value. C{key} might have the form “key=value” when value is C{None}.

set_throttle(name)
Assign to throttle group.

size
data size

start()
(Re-)start downloading or seeding.

started
time download was FIRST started

stop()
Stop and close download.

stopped
time download was last stopped or paused

tag(tags)
Add or remove tags.

tagged
has certain tags? (not related to the ‘tagged’ view)

throttle
throttle group name (NULL=unlimited, NONE=global)

tracker
first in the list of announce URLs

traits
automatic classification of this item (audio, video, tv, movie, etc.)

up
upload rate

uploaded
amount of uploaded data

views
views this item is attached to

xfer
transfer rate

class pyrocore.torrent.engine.TorrentView(engine, viewname, matcher=None)
Bases: object

A view on a subset of torrent items.

items()
Get list of download items.

size()
Total unfiltered size of view.

pyrocore.torrent.engine.detect_traits(item)
Build traits list from attributes of the passed item. Currently, “kind_51”, “name” and “alias” are considered.

1.14. API Documentation 123

https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

See pyrocore.util.traits:dectect_traits for more details.

pyrocore.torrent.engine.percent(floatval)
Convert float ratio to a percent value.

pyrocore.torrent.engine.ratio_float(intval)
Convert scaled integer ratio to a normalized float.

pyrocore.torrent.engine.untyped(val)
A type specifier for fields that does nothing.

pyrocore.torrent.filter module

rTorrent Item Filter Jobs.

Copyright (c) 2012 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.torrent.filter.ActionRule(config=None)
Bases: pyrocore.torrent.filter.FilterJobBase

Perform an action on selected items.

run_filter(items)
Perform configured action on filtered items.

class pyrocore.torrent.filter.FilterJobBase(config=None)
Bases: object

Base class for filter rule jobs.

run()
Filter job callback.

run_filter(items)
Perform job on filtered items.

class pyrocore.torrent.filter.TorrentMirror(config=None)
Bases: pyrocore.torrent.filter.FilterJobBase

Mirror selected items via a specified tracker.

run_filter(items)
Load filtered items into remote client via tracker / watchdir.

pyrocore.torrent.formatting module

Torrent Item Formatting and Filter Rule Parsing.

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.torrent.formatting.OutputMapping(obj, defaults=None)
Bases: pyrocore.util.algo.AttributeMapping

Map item fields for displaying them.

classmethod formatter_help()
Return a list of format specifiers and their documentation.

pyrocore.torrent.formatting.expand_template(template, namespace)
Expand the given (preparsed) template. Currently, only Tempita templates are supported.

124 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object
mailto:pyroscope.project@gmail.com


pyrocore Documentation, Release 0.6.1

@param template: The template, in preparsed form, or as a string (which then will be preparsed). @param
namespace: Custom namespace that is added to the predefined defaults

and takes precedence over those.

@return: The expanded template. @raise LoggableError: In case of typical errors during template execution.

pyrocore.torrent.formatting.filter_subst(regex, subst)
Replace regex with string.

pyrocore.torrent.formatting.fmt_delta(timestamp)
Format a UNIX timestamp to a delta (relative to now).

pyrocore.torrent.formatting.fmt_duration(duration)
Format a duration value in seconds to a readable form.

pyrocore.torrent.formatting.fmt_iso(timestamp)
Format a UNIX timestamp to an ISO datetime string.

pyrocore.torrent.formatting.fmt_json(val)
JSON serialization.

pyrocore.torrent.formatting.fmt_mtime(val)
Modification time of a path.

pyrocore.torrent.formatting.fmt_pathbase(val)
Base name of a path.

pyrocore.torrent.formatting.fmt_pathdir(val)
Directory containing the given path.

pyrocore.torrent.formatting.fmt_pathext(val)
Extension of a path (including the ‘.’).

pyrocore.torrent.formatting.fmt_pathname(val)
Base name of a path, without its extension.

pyrocore.torrent.formatting.fmt_pc(floatval)
Scale a ratio value to percent.

pyrocore.torrent.formatting.fmt_strip(val)
Strip leading and trailing whitespace.

pyrocore.torrent.formatting.fmt_sz(intval)
Format a byte sized value.

pyrocore.torrent.formatting.format_item(format_spec, item, defaults=None)
Format an item according to the given output format. The format can be gioven as either an interpolation string,
or a Tempita template (which has to start with “E{lb}E{lb}”),

@param format_spec: The output format. @param item: The object, which is automatically wrapped for
interpolation. @param defaults: Optional default values.

pyrocore.torrent.formatting.parse_sz(text)
Get a byte sized value.

pyrocore.torrent.formatting.preparse(output_format)
Do any special processing of a template, and return the result.

pyrocore.torrent.formatting.validate_field_list(fields, allow_fmt_specs=False,
name_filter=None)

Make sure the fields in the given list exist.

@param fields: List of fields (comma-/space-separated if a string). @type fields: list or str @return: validated
field names. @rtype: list

1.14. API Documentation 125



pyrocore Documentation, Release 0.6.1

pyrocore.torrent.formatting.validate_sort_fields(sort_fields)
Make sure the fields in the given list exist, and return sorting key.

If field names are prefixed with ‘-’, sort order is reversed for that field (descending).

pyrocore.torrent.jobs module

rTorrent Daemon Jobs.

Copyright (c) 2012 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.torrent.jobs.EngineStats(config=None)
Bases: object

rTorrent connection statistics logger.

run()
Statistics logger job callback.

class pyrocore.torrent.jobs.InfluxDBStats(config=None)
Bases: object

Push rTorrent and host statistics to InfluxDB.

run()
Statistics feed job callback.

pyrocore.torrent.jobs.module_test()
Quick test using. . .

python -m pyrocore.torrent.jobs

pyrocore.torrent.queue module

rTorrent Queue Manager.

Copyright (c) 2012 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.torrent.queue.QueueManager(config=None)
Bases: object

rTorrent queue manager implementation.

VIEWNAME = 'pyrotorque'

run()
Queue manager job callback.

pyrocore.torrent.rtorrent module

rTorrent Proxy.

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.torrent.rtorrent.CommaLexer(text)
Bases: shlex.shlex

Helper to split argument lists.

126 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/shlex.html#shlex.shlex


pyrocore Documentation, Release 0.6.1

class pyrocore.torrent.rtorrent.RtorrentEngine
Bases: pyrocore.torrent.engine.TorrentEngine

The rTorrent backend proxy.

CONSTANT_FIELDS = set(['hash', 'is_multi_file', 'is_private', 'name', 'size_bytes', 'tracker_size'])

CORE_FIELDS = set(['complete', 'hash', 'is_multi_file', 'is_private', 'name', 'size_bytes', 'tied_to_file', 'tracker_size'])

PREFETCH_FIELDS = set(['base_path', 'complete', 'custom=m_alias', 'custom=tm_completed', 'custom=tm_loaded', 'custom=tm_started', 'down_rate', 'down_total', 'hash', 'is_active', 'is_multi_file', 'is_open', 'is_private', 'name', 'ratio', 'size_bytes', 'tied_to_file', 'tracker_size', 'up_rate', 'up_total'])

PYRO2RT_MAPPING = {'custom_m_alias': 'custom=m_alias', 'custom_tm_completed': 'custom=tm_completed', 'custom_tm_loaded': 'custom=tm_loaded', 'custom_tm_started': 'custom=tm_started', 'down': 'down_rate', 'is_complete': 'complete', 'is_ignored': 'ignore_commands', 'metafile': 'tied_to_file', 'path': 'base_path', 'prio': 'priority', 'size': 'size_bytes', 'throttle': 'throttle_name', 'up': 'up_rate'}

RT2PYRO_MAPPING = {'base_path': 'path', 'complete': 'is_complete', 'custom=m_alias': 'custom_m_alias', 'custom=tm_completed': 'custom_tm_completed', 'custom=tm_loaded': 'custom_tm_loaded', 'custom=tm_started': 'custom_tm_started', 'down_rate': 'down', 'ignore_commands': 'is_ignored', 'priority': 'prio', 'size_bytes': 'size', 'throttle_name': 'throttle', 'tied_to_file': 'metafile', 'up_rate': 'up'}

RTORRENT_RC_ALIASES = {'network.scgi.open_local': 'scgi_local', 'network.scgi.open_port': 'scgi_port'}

RTORRENT_RC_KEYS = ('scgi_local', 'scgi_port')

item(infohash, prefetch=None, cache=False)
Fetch a single item by its info hash.

items(view=None, prefetch=None, cache=True)
Get list of download items.

@param view: Name of the view. @param prefetch: OPtional list of field names to fetch initially. @param
cache: Cache items for the given view?

load_config(namespace=None, rcfile=None)
Load file given in “rcfile”.

log(msg)
Log a message in the torrent client.

multicall(viewname, fields)
Query the given fields of items in the given view.

The result list contains named tuples, so you can access the fields directly by their name.

open()
Open connection.

show(items, view=None, append=False, disjoin=False)
Visualize a set of items (search result), and return the view name.

uptime
rTorrent’s uptime.

class pyrocore.torrent.rtorrent.RtorrentItem(engine_, fields)
Bases: pyrocore.torrent.engine.TorrentProxy

A single download item.

announce_urls(default=[])
Get a list of all announce URLs. Returns default if no trackers are found at all.

as_dict()
Return known fields.

cull(file_filter=None, attrs=None)
Delete ALL data files and remove torrent from client.

@param file_filter: Optional callable for selecting a subset of all files. The callable gets a file item as
described for RtorrentItem._get_files and must return True for items eligible for deletion.

@param attrs: Optional list of additional attributes to fetch for a filter.

1.14. API Documentation 127



pyrocore Documentation, Release 0.6.1

datapath()
Get an item’s data path.

delete()
Remove torrent from client.

execute(commands)
Execute XMLRPC command(s).

fetch(name, engine_name=None)
Get a field on demand.

flush()
Write volatile data to disk.

hash_check()
Hash check a download.

ignore(flag)
Set ignore status.

purge()
Delete PARTIAL data files and remove torrent from client.

set_custom(key, value=None)
Set a custom value. C{key} might have the form “key=value” when value is C{None}.

set_prio(prio)
Set priority (0-3).

set_throttle(name)
Assign to throttle group.

start()
(Re-)start downloading or seeding.

stop()
Stop and close download.

tag(tags)
Add or remove tags.

pyrocore.torrent.rtorrent.run()
Module level test.

pyrocore.torrent.watch module

rTorrent Watch Jobs.

Copyright (c) 2012 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.torrent.watch.MetafileHandler(job, pathname)
Bases: object

Handler for loading metafiles into rTorrent.

addinfo()
Add known facts to templating namespace.

handle()
Handle metafile.

128 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

load()
Load metafile into client.

parse()
Parse metafile and check pre-conditions.

class pyrocore.torrent.watch.RemoteWatch(config=None)
Bases: object

rTorrent remote torrent file watch.

run()
Check remote watch target.

class pyrocore.torrent.watch.TreeWatch(config=None)
Bases: object

rTorrent folder tree watch via inotify.

run()
Regular maintenance and fallback task.

setup()
Set up inotify manager.

See https://github.com/seb-m/pyinotify/.

class pyrocore.torrent.watch.TreeWatchCommand
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Use tree watcher directly from cmd line, call it like this: python -m pyrocore.torrent.watch <DIR>

If the argument is a file, the templating namespace for that metafile is dumped (for testing and debugging
purposes).

ARGS_HELP = '<directory>'

OPTIONAL_CFG_FILES = ['torque.ini']

STD_LOG_LEVEL = 10

classmethod main()
The entry point.

mainloop()
The main loop.

class pyrocore.torrent.watch.TreeWatchHandler(pevent=None, **kargs)
Bases: pyinotify.ProcessEvent

inotify event handler for rTorrent folder tree watch.

See https://github.com/seb-m/pyinotify/.

METAFILE_EXT = ('.torrent', '.load', '.start', '.queue')

handle_path(event)
Handle a path-related event.

my_init(**kw)
This method is called from ProcessEvent.__init__(). This method is empty here and must be redefined to be
useful. In effect, if you need to specifically initialize your subclass’ instance then you just have to override
this method in your subclass. Then all the keyworded arguments passed to ProcessEvent.__init__() will be
transmitted as parameters to this method. Beware you MUST pass keyword arguments though.

@param kargs: optional delegated arguments from __init__(). @type kargs: dict

1.14. API Documentation 129

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://github.com/seb-m/pyinotify/
https://github.com/seb-m/pyinotify/


pyrocore Documentation, Release 0.6.1

process_IN_CLOSE_WRITE(event)
File written.

process_IN_MOVED_TO(event)
File moved into tree.

process_default(event)
Fallback.

pyrocore.ui package

Curses UI helpers and extensions.

Copyright (c) 2017 The PyroScope Project <pyroscope.project@gmail.com>

Submodules

pyrocore.ui.categories module

Category management.

Copyright (c) 2017 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.ui.categories.CategoryManager
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Rotate through category views.

ARGS_HELP = ''

PREFIX = 'category_'

PREFIX_LEN = 9

add_options()
Add program options.

mainloop()
Manage category views.

pyrocore.ui.categories.run()
The entry point.

pyrocore.ui.theming module

Color theme support.

Copyright (c) 2017 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.ui.theming.ThemeSwitcher
Bases: pyrocore.scripts.base.ScriptBaseWithConfig

Rotate through color themes.

ARGS_HELP = ''

add_options()
Add program options.

130 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com


pyrocore Documentation, Release 0.6.1

mainloop()
Handle theme selection changes, or rotate through selection.

pyrocore.ui.theming.run()
The entry point.

pyrocore.util package

Utility Modules.

Copyright (c) 2010 The PyroScope Project <pyroscope.project@gmail.com>

Submodules

pyrocore.util.algo module

Helper Algorithms.

Copyright (c) 2009, 2010 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.util.algo.AttributeMapping(obj, defaults=None)
Bases: object

Wrap an object’s dict so that it can be accessed by the mapping protocol.

pyrocore.util.algo.flatten(nested, containers=(<type ’list’>, <type ’tuple’>))
Flatten a nested list in-place and return it.

pyrocore.util.load_config module

Configuration Loader.

For details, see https://pyrocore.readthedocs.io/en/latest/setup.html

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.util.load_config.ConfigLoader(config_dir=None)
Bases: object

Populates this module’s dictionary with the user-defined configuration values.

CONFIG_INI = 'config.ini'

CONFIG_PY = 'config.py'

INTERPOLATION_ESCAPE = <_sre.SRE_Pattern object>

create(remove_all_rc_files=False)
Create default configuration files at either the default location or the given directory.

load(optional_cfg_files=None)
Actually load the configuation from either the default location or the given directory.

pyrocore.util.load_config.validate(key, val)
Validate a configuration value.

pyrocore.util.load_config.walk_resources(package_or_requirement, resource_name, re-
curse=True, base=”)

Yield paths of files in the given resource directory, all paths start with ‘/’.

1.14. API Documentation 131

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object
https://pyrocore.readthedocs.io/en/latest/setup.html
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

pyrocore.util.matching module

Torrent Item Filters.

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.util.matching.BoolFilter(name, value)
Bases: pyrocore.util.matching.FieldFilter

Filter boolean values.

match(item)
Return True if filter matches item.

pre_filter()
Return rTorrent condition to speed up data transfer.

validate()
Validate filter condition (template method).

class pyrocore.util.matching.ByteSizeFilter(name, value)
Bases: pyrocore.util.matching.NumericFilterBase

Filter size and bandwidth values.

UNITS = {'b': 1, 'g': 1073741824, 'k': 1024, 'm': 1048576}

pre_filter()
Return rTorrent condition to speed up data transfer.

validate()
Validate filter condition (template method).

class pyrocore.util.matching.CompoundFilterAll
Bases: pyrocore.util.matching.CompoundFilterBase

List of filters that must all match (AND).

match(item)
Return True if filter matches item.

pre_filter()
Return rTorrent condition to speed up data transfer.

class pyrocore.util.matching.CompoundFilterAny
Bases: pyrocore.util.matching.CompoundFilterBase

List of filters where at least one must match (OR).

match(item)
Return True if filter matches item.

pre_filter()
Return rTorrent condition to speed up data transfer.

class pyrocore.util.matching.CompoundFilterBase
Bases: pyrocore.util.matching.Filter, list

List of filters.

class pyrocore.util.matching.ConditionParser(lookup, default_field=None,
ident_re=’[_A-Za-z][_A-Za-z0-9]*’)

Bases: object

Filter condition parser.

132 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

classmethod AMENABLE(_)
Prefined lookup mode for typeless access to any field name.

COMPARISON_OPS = {'!=': '!%s', '<': '-%s', '<=': '!+%s', '<>': '!%s', '>': '+%s', '>=': '!-%s', '~': '/%s/'}

parse(conditions)
Parse filter conditions.

@param conditions: multiple conditions. @type conditions: list or str

class pyrocore.util.matching.DurationFilter(name, value)
Bases: pyrocore.util.matching.TimeFilter

Filter durations in seconds.

match(item)
Return True if filter matches item.

validate()
Validate filter condition (template method).

class pyrocore.util.matching.EqualsFilter(name, value)
Bases: pyrocore.util.matching.FieldFilter

Filter fields equal to the given value.

match(item)
Return True if filter matches item.

class pyrocore.util.matching.FieldFilter(name, value)
Bases: pyrocore.util.matching.Filter

Base class for all field filters.

PRE_FILTER_FIELDS = {'completed': 'd.custom=tm_completed', 'custom_tm_completed': 'd.custom=tm_completed', 'custom_tm_loaded': 'd.custom=tm_loaded', 'custom_tm_started': 'd.custom=tm_started', 'down': 'd.down.rate=', 'hash': 'd.hash=', 'is_active': 'd.is_active=', 'is_complete': 'd.complete=', 'is_ignored': 'd.ignore_commands=', 'is_multi_file': 'd.is_multi_file=', 'is_open': 'd.is_open=', 'loaded': 'd.custom=tm_loaded', 'message': 'd.message=', 'metafile': 'd.tied_to_file=', 'name': 'd.name=', 'path': 'd.base_path=', 'prio': 'd.priority=', 'ratio': 'd.ratio=', 'size': 'd.size_bytes=', 'started': 'd.custom=tm_started', 'tagged': 'd.custom=tags', 'throttle': 'd.throttle_name=', 'up': 'd.up.rate=', 'uploaded': 'd.up.total='}

validate()
Validate filter condition (template method).

class pyrocore.util.matching.FilesFilter(name, value)
Bases: pyrocore.util.matching.PatternFilter

Case-insensitive pattern filter on filenames in a torrent.

match(item)
Return True if filter matches item.

class pyrocore.util.matching.Filter
Bases: object

Base class for all filters.

match(item)
Return True if filter matches item.

pre_filter()
Return rTorrent condition to speed up data transfer.

exception pyrocore.util.matching.FilterError
Bases: pyrocore.error.UserError

(Syntax) error in filter.

class pyrocore.util.matching.FloatFilter(name, value)
Bases: pyrocore.util.matching.NumericFilterBase

1.14. API Documentation 133

https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

Filter float values.

FIELD_SCALE = {'ratio': 1000}

pre_filter()
Return rTorrent condition to speed up data transfer.

validate()
Validate filter condition (template method).

class pyrocore.util.matching.MagicFilter(name, value)
Bases: pyrocore.util.matching.FieldFilter

Filter that looks at the comparison value and automatically decides what type of filter to use.

match(item)
Return True if filter matches item.

validate()
Validate filter condition (template method).

class pyrocore.util.matching.NegateFilter(inner)
Bases: pyrocore.util.matching.Filter

Negate result of another filter (NOT).

match(item)
Return True if filter matches item.

pre_filter()
Return rTorrent condition to speed up data transfer.

class pyrocore.util.matching.NumericFilterBase(name, value)
Bases: pyrocore.util.matching.FieldFilter

Base class for numerical value filters.

match(item)
Return True if filter matches item.

validate()
Validate filter condition (template method).

class pyrocore.util.matching.PatternFilter(name, value)
Bases: pyrocore.util.matching.FieldFilter

Case-insensitive pattern filter, either a glob or a /regex/ pattern.

CLEAN_PRE_VAL_RE = <_sre.SRE_Pattern object>

SPLIT_PRE_GLOB_RE = <_sre.SRE_Pattern object>

SPLIT_PRE_VAL_RE = <_sre.SRE_Pattern object>

match(item)
Return True if filter matches item.

pre_filter()
Return rTorrent condition to speed up data transfer.

validate()
Validate filter condition (template method).

class pyrocore.util.matching.TaggedAsFilter(name, value)
Bases: pyrocore.util.matching.FieldFilter

134 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

Case-insensitive tags filter. Tag fields are white-space separated lists of tags.

match(item)
Return True if filter matches item.

pre_filter()
Return rTorrent condition to speed up data transfer.

validate()
Validate filter condition (template method).

class pyrocore.util.matching.TimeFilter(name, value)
Bases: pyrocore.util.matching.NumericFilterBase

Filter UNIX timestamp values.

TIMEDELTA_RE = <_sre.SRE_Pattern object>

TIMEDELTA_UNITS = {'d': <function <lambda>>, 'h': <function <lambda>>, 'i': <function <lambda>>, 'm': <function <lambda>>, 's': <function <lambda>>, 'w': <function <lambda>>, 'y': <function <lambda>>}

pre_filter()
Return rTorrent condition to speed up data transfer.

validate()
Validate filter condition (template method).

validate_time(duration=False)
Validate filter condition (template method) for timestamps and durations.

class pyrocore.util.matching.TimeFilterNotNull(name, value)
Bases: pyrocore.util.matching.TimeFilter

Filter UNIX timestamp values, ignore unset values unless compared to 0.

validate()
Validate filter condition (template method).

pyrocore.util.matching.truth(val, context)
Convert truth value in “val” to a boolean.

pyrocore.util.matching.unquote_pre_filter(pre_filter, _regex=<_sre.SRE_Pattern object>)
Unquote a pre-filter condition.

pyrocore.util.metafile module

Metafile Support.

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.util.metafile.MaskingPrettyPrinter(indent=1, width=80, depth=None,
stream=None)

Bases: pprint.PrettyPrinter

A PrettyPrinter that masks strings in the object tree.

format(obj, context, maxlevels, level)
Mask obj if it looks like an URL, then pass it to the super class.

class pyrocore.util.metafile.Metafile(filename, datapath=None)
Bases: object

A torrent metafile.

CHUNK_MAX = 16777216

1.14. API Documentation 135

mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/pprint.html#pprint.PrettyPrinter
https://docs.python.org/2/library/functions.html#object


pyrocore Documentation, Release 0.6.1

CHUNK_MIN = 32768

IGNORE_GLOB = [u'core', u'CVS', u'.*', u'*~', u'*.swp', u'*.tmp', u'*.bak', u'[Tt]humbs.db', u'[Dd]esktop.ini', u'ehthumbs_vista.db', u'*.json', u'*-thumb.*']

check(metainfo, datapath, progress=None)
Check piece hashes of a metafile against the given datapath.

Return True when OK.

create(datapath, tracker_urls, comment=None, root_name=None, created_by=None, private=False,
no_date=False, progress=None, callback=None, chunk_min=0, chunk_max=0)

Create a metafile with the path given on object creation. Returns the last metafile dict that was written (as
an object, not bencoded).

datapath
Get a valid datapath, else raise an exception.

listing(masked=True)
List torrent info & contents. Returns a list of formatted lines.

walk()
Generate paths in “self.datapath”.

pyrocore.util.metafile.add_fast_resume(meta, datapath)
Add fast resume data to a metafile dict.

pyrocore.util.metafile.assign_fields(meta, assignments, options_debug=False)
Takes a list of C{key=value} strings and assigns them to the given metafile. If you want to set nested keys
(e.g. “info.source”), you have to use a dot as a separator. For exotic keys containing a dot, double that dot
(“dotted..key”).

Numeric values starting with “+” or “-” are converted to integers.

If just a key name is given (no ‘=’), the field is removed.

pyrocore.util.metafile.check_info(info)
Validate info dict.

Raise ValueError if validation fails.

pyrocore.util.metafile.check_meta(meta)
Validate meta dict.

Raise ValueError if validation fails.

pyrocore.util.metafile.checked_open(filename, log=None, quiet=False)
Open and validate the given metafile. Optionally provide diagnostics on the passed logger, for invalid metafiles,
which then just cause a warning but no exception. “quiet” can supress that warning.

pyrocore.util.metafile.clean_meta(meta, including_info=False, logger=None)
Clean meta dict. Optionally log changes using the given logger.

@param logger: If given, a callable accepting a string message. @return: Set of keys removed from C{meta}.

pyrocore.util.metafile.console_progress()
Return a progress indicator for consoles if stdout is a tty.

pyrocore.util.metafile.data_size(metadata)
Calculate the size of a torrent based on parsed metadata.

pyrocore.util.metafile.info_hash(metadata)
Return info hash as a string.

pyrocore.util.metafile.mask_keys(announce_url)
Mask any passkeys (hex sequences) in an announce URL.

136 Chapter 1. Contents of This Manual



pyrocore Documentation, Release 0.6.1

pyrocore.util.metafile.sanitize(meta, diagnostics=False)
Try to fix common problems, especially transcode non-standard string encodings.

pyrocore.util.osmagic module

Platform Specific Incantations.

Copyright (c) 2011 The PyroScope Project <pyroscope.project@gmail.com>

pyrocore.util.osmagic.check_process(pidfile)
Read pid file and check process status. Return (running, pid).

pyrocore.util.osmagic.daemonize(pidfile=None, logfile=None, sync=True)
Fork the process into the background.

@param pidfile: Optional PID file path. @param sync: Wait for parent process to disappear? @param logfile:
Optional name of stdin/stderr log file or stream.

pyrocore.util.osmagic.guard(pidfile, guardfile=None)
Raise an EnvironmentError when the “guardfile” doesn’t exist, or the process with the ID found in “pidfile” is
still active.

pyrocore.util.pymagic module

Python Utility Functions.

Copyright (c) 2009, 2010 The PyroScope Project <pyroscope.project@gmail.com>

class pyrocore.util.pymagic.JSONEncoder(skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None,
encoding=’utf-8’, default=None)

Bases: json.encoder.JSONEncoder

Custon JSON encoder.

default(o)
Support more object types.

pyrocore.util.pymagic.get_class_logger(obj)
Get a logger specific for the given object’s class.

pyrocore.util.pymagic.get_lazy_logger(name)
Return a logger proxy that is lazily initialized.

This avoids the problems associated with module-level loggers being created early (on import), before the log-
ging system is properly initialized.

pyrocore.util.pymagic.import_name(module_spec, name=None)
Import identifier C{name} from module C{module_spec}.

If name is omitted, C{module_spec} must contain the name after the module path, delimited by a colon (like a
setuptools entry-point).

@param module_spec: Fully qualified module name, e.g. C{x.y.z}. @param name: Name to import from
C{module_spec}. @return: Requested object. @rtype: object

1.14. API Documentation 137

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com


pyrocore Documentation, Release 0.6.1

pyrocore.util.stats module

Statistics data.

Copyright (c) 2014 The PyroScope Project <pyroscope.project@gmail.com>

pyrocore.util.stats.engine_data(engine)
Get important performance data and metadata from rTorrent.

pyrocore.util.traits module

Classification.

Copyright (c) 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

pyrocore.util.traits.detect_traits(name=None, alias=None, filetype=None)
Build traits list from passed attributes.

The result is a list of hierarchical classifiers, the top-level consisting of “audio”, “movie”, “tv”, “video”, “docu-
ment”, etc. It can be used as a part of completion paths to build directory structures.

pyrocore.util.traits.get_filetypes(filelist, path=None, size=<function <lambda>>)
Get a sorted list of file types and their weight in percent from an iterable of file names.

@return: List of weighted file extensions (no ‘.’), sorted in descending order @rtype: list of (weight, filetype)

pyrocore.util.traits.name_trait(name, add_info=False)
Determine content type from name.

pyrocore.util.xmlrpc module

RTorrent client proxy.

Copyright (c) 2011 The PyroScope Project <pyroscope.project@gmail.com>

exception pyrocore.util.xmlrpc.HashNotFound(msg, *args)
Bases: pyrocore.util.xmlrpc.XmlRpcError

Non-existing or disappeared hash.

class pyrocore.util.xmlrpc.RTorrentMethod(proxy, method_name)
Bases: object

Collect attribute accesses to build the final method name.

NEEDS_FAKE_TARGET = set(['ui.current_view.set', 'view_filter'])

class pyrocore.util.xmlrpc.RTorrentProxy(url, mapping=None)
Bases: object

Proxy to rTorrent’s XMLRPC interface.

Method calls are built from attribute accesses, i.e. you can do something like C{proxy.system.client_version()}.

exception pyrocore.util.xmlrpc.XmlRpcError(msg, *args)
Bases: exceptions.Exception

Base class for XMLRPC protocol errors.

138 Chapter 1. Contents of This Manual

mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/exceptions.html#exceptions.Exception


pyrocore Documentation, Release 0.6.1

Submodules

pyrocore.config module

Configuration.

For details, see https://pyrocore.readthedocs.io/en/latest/setup.html

Copyright (c) 2009, 2010, 2011 The PyroScope Project <pyroscope.project@gmail.com>

pyrocore.config.lookup_announce_alias(name)
Get canonical alias name and announce URL list for the given alias.

pyrocore.config.map_announce2alias(url)
Get tracker alias for announce URL, and if none is defined, the 2nd level domain.

pyrocore.error module

Exception Classes.

Copyright (c) 2010 The PyroScope Project <pyroscope.project@gmail.com>

exception pyrocore.error.EngineError
Bases: pyrocore.error.LoggableError

Connection or other backend error.

exception pyrocore.error.LoggableError
Bases: exceptions.Exception

An exception that is intended to be logged instead of passing it to the runtime environment which will likely
produce a full stacktrace.

exception pyrocore.error.NetworkError
Bases: pyrocore.error.LoggableError

External connection errors.

exception pyrocore.error.UserError
Bases: pyrocore.error.LoggableError

Yes, it was your fault!

1.14.2 Tempita Templating API

tempita package

A small templating language

This implements a small templating language. This language implements if/elif/else, for/continue/break, expressions,
and blocks of Python code. The syntax is:

{{any expression (function calls etc)}}
{{any expression | filter}}
{{for x in y}}...{{endfor}}
{{if x}}x{{elif y}}y{{else}}z{{endif}}
{{py:x=1}}
{{py:

(continues on next page)

1.14. API Documentation 139

https://pyrocore.readthedocs.io/en/latest/setup.html
mailto:pyroscope.project@gmail.com
mailto:pyroscope.project@gmail.com
https://docs.python.org/2/library/exceptions.html#exceptions.Exception


pyrocore Documentation, Release 0.6.1

(continued from previous page)

def foo(bar):
return 'baz'

}}
{{default var = default_value}}
{{# comment}}

You use this with the Template class or the sub shortcut. The Template class takes the template string and
the name of the template (for errors) and a default namespace. Then (like string.Template) you can call the
tmpl.substitute(**kw) method to make a substitution (or tmpl.substitute(a_dict)).

sub(content, **kw) substitutes the template immediately. You can use __name='tmpl.html' to set the
name of the template.

If there are syntax errors TemplateError will be raised.

exception tempita.TemplateError(message, position, name=None)
Bases: exceptions.Exception

Exception raised while parsing a template

class tempita.Template(content, name=None, namespace=None, stacklevel=None,
get_template=None, default_inherit=None, line_offset=0, delim-
iters=None)

Bases: object

default_encoding = 'utf8'

default_inherit = None

default_namespace = {'end_braces': '}}', 'looper': <class 'tempita._looper.looper'>, 'start_braces': '{{'}

classmethod from_filename(filename, namespace=None, encoding=None, de-
fault_inherit=None, get_template=<function get_file_template>)

substitute(*args, **kw)

tempita.sub(content, delimiters=None, **kw)

class tempita.HTMLTemplate(content, name=None, namespace=None, stacklevel=None,
get_template=None, default_inherit=None, line_offset=0, delim-
iters=None)

Bases: tempita.Template

default_namespace = {'attr': <function attr>, 'end_braces': '}}', 'html': <class 'tempita.html'>, 'html_quote': <function html_quote>, 'looper': <class 'tempita._looper.looper'>, 'start_braces': '{{', 'url': <function url>}

tempita.sub_html(content, **kw)

class tempita.html(value)
Bases: object

class tempita.bunch(**kw)
Bases: dict

Submodules

tempita.compat3 module

tempita.compat3.b
alias of __builtin__.str

140 Chapter 1. Contents of This Manual

https://docs.python.org/2/library/exceptions.html#exceptions.Exception
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/stdtypes.html#dict


pyrocore Documentation, Release 0.6.1

tempita.compat3.basestring_
alias of __builtin__.basestring

tempita.compat3.bytes
alias of __builtin__.str

tempita.compat3.next(obj)

tempita.compat3.is_unicode(obj)

1.15 Contributing Guidelines

See contribution-guide.org for the basics on contributing to an open source project.

1.15.1 Reporting an Issue, or Requesting a Feature

Any defects and feature requests are managed using GitHub’s issue tracker. If you never opened an issue on GitHub
before, consult the Mastering Issues guide.

Before creating a bug report, please read the Trouble-Shooting Guide and also see contribution-guide.org’s
Submitting Bugs.

1.15.2 Performing a Release

1. Check for and fix pylint violations:

paver lint -m

2. Verify debian/changelog for completeness and the correct version, and bump the release date:

dch -r

3. Check Travis CI status at https://travis-ci.org/pyroscope/pyrocore

4. Remove ‘dev’ version tagging from setup.cfg, and perform a release check:

sed -i -re 's/^(tag_[a-z ]+=)/##\1/' setup.cfg
paver release

5. Commit and tag the release:

git status # check all is committed
tag="v$(dpkg-parsechangelog | grep '^Version:' | awk '{print $2}')"
git tag -a "$tag" -m "Release $tag"

6. Build the final release and upload it to PyPI:

paver dist_clean sdist bdist_wheel
twine upload dist/*.{zip,whl}

1.15. Contributing Guidelines 141

http://www.contribution-guide.org/
https://guides.github.com/features/issues/
https://pyrocore.readthedocs.org/en/latest/troubleshooting.html
http://www.contribution-guide.org/#submitting-bugs
https://travis-ci.org/pyroscope/pyrocore


pyrocore Documentation, Release 0.6.1

1.16 Indices & Tables

• genindex

• modindex

• search

142 Chapter 1. Contents of This Manual



Python Module Index

p
pyrocore, 109
pyrocore.config, 139
pyrocore.daemon, 109
pyrocore.daemon.webapp, 109
pyrocore.error, 139
pyrocore.scripts, 110
pyrocore.scripts.base, 110
pyrocore.scripts.chtor, 112
pyrocore.scripts.hashcheck, 112
pyrocore.scripts.lstor, 112
pyrocore.scripts.mktor, 113
pyrocore.scripts.pyroadmin, 113
pyrocore.scripts.pyrotorque, 114
pyrocore.scripts.rtcontrol, 114
pyrocore.scripts.rtevent, 116
pyrocore.scripts.rtmv, 116
pyrocore.scripts.rtsweep, 117
pyrocore.scripts.rtxmlrpc, 117
pyrocore.torrent, 118
pyrocore.torrent.broom, 118
pyrocore.torrent.engine, 119
pyrocore.torrent.filter, 124
pyrocore.torrent.formatting, 124
pyrocore.torrent.jobs, 126
pyrocore.torrent.queue, 126
pyrocore.torrent.rtorrent, 126
pyrocore.torrent.watch, 128
pyrocore.ui, 130
pyrocore.ui.categories, 130
pyrocore.ui.theming, 130
pyrocore.util, 131
pyrocore.util.algo, 131
pyrocore.util.load_config, 131
pyrocore.util.matching, 132
pyrocore.util.metafile, 135
pyrocore.util.osmagic, 137
pyrocore.util.pymagic, 137
pyrocore.util.stats, 138

pyrocore.util.traits, 138
pyrocore.util.xmlrpc, 138

t
tempita, 139
tempita.compat3, 140

143



pyrocore Documentation, Release 0.6.1

144 Python Module Index



Index

Symbols
-config-dir <DIR>

command line option, 16
-debug

command line option, 16
-version

command line option, 15
-h, -help

command line option, 15
-q, -quiet

command line option, 15
-v, -verbose

command line option, 15

A
ACTION_MODES (pyro-

core.scripts.rtcontrol.RtorrentControl at-
tribute), 115

ActionRule (class in pyrocore.torrent.filter), 124
active (pyrocore.torrent.engine.TorrentProxy at-

tribute), 120
add() (pyrocore.scripts.rtcontrol.FieldStatistics

method), 114
add_bool_option() (pyro-

core.scripts.base.ScriptBase method), 111
add_custom_fields() (pyro-

core.torrent.engine.TorrentProxy class
method), 120

add_fast_resume() (in module pyro-
core.util.metafile), 136

add_manifold_attribute() (pyro-
core.torrent.engine.TorrentProxy class
method), 120

add_options() (pyro-
core.scripts.base.PromptDecorator method),
110

add_options() (pyrocore.scripts.base.ScriptBase
method), 111

add_options() (pyro-

core.scripts.base.ScriptBaseWithConfig
method), 111

add_options() (pyro-
core.scripts.chtor.MetafileChanger method),
112

add_options() (pyro-
core.scripts.hashcheck.MetafileChecker
method), 112

add_options() (pyrocore.scripts.lstor.MetafileLister
method), 113

add_options() (pyro-
core.scripts.mktor.MetafileCreator method),
113

add_options() (pyro-
core.scripts.pyroadmin.AdminTool method),
114

add_options() (pyro-
core.scripts.pyrotorque.RtorrentQueueManager
method), 114

add_options() (pyro-
core.scripts.rtcontrol.RtorrentControl method),
115

add_options() (pyro-
core.scripts.rtevent.RtorrentEventHandler
method), 116

add_options() (pyrocore.scripts.rtmv.RtorrentMove
method), 116

add_options() (pyro-
core.scripts.rtsweep.RtorrentSweep method),
117

add_options() (pyro-
core.scripts.rtxmlrpc.RtorrentXmlRpc method),
117

add_options() (pyro-
core.ui.categories.CategoryManager method),
130

add_options() (pyrocore.ui.theming.ThemeSwitcher
method), 130

add_route() (pyrocore.daemon.webapp.Router
method), 110

145



pyrocore Documentation, Release 0.6.1

add_value_option() (pyro-
core.scripts.base.ScriptBase method), 111

addinfo() (pyrocore.torrent.watch.MetafileHandler
method), 128

ADDITIONAL_HELP (pyrocore.scripts.base.ScriptBase
attribute), 111

ADDITIONAL_HELP (pyro-
core.scripts.rtcontrol.RtorrentControl at-
tribute), 115

AdminTool (class in pyrocore.scripts.pyroadmin), 113
alias (pyrocore.torrent.engine.TorrentProxy attribute),

120
ALTER_MODES (pyro-

core.scripts.rtcontrol.RtorrentControl at-
tribute), 115

AMENABLE() (pyrocore.util.matching.ConditionParser
class method), 132

anneal() (pyrocore.scripts.rtcontrol.RtorrentControl
method), 115

announce_urls() (pyro-
core.torrent.engine.TorrentProxy method),
120

announce_urls() (pyro-
core.torrent.rtorrent.RtorrentItem method),
127

ARGS_HELP (pyrocore.scripts.base.ScriptBase at-
tribute), 111

ARGS_HELP (pyrocore.scripts.chtor.MetafileChanger at-
tribute), 112

ARGS_HELP (pyrocore.scripts.hashcheck.MetafileChecker
attribute), 112

ARGS_HELP (pyrocore.scripts.lstor.MetafileLister
attribute), 113

ARGS_HELP (pyrocore.scripts.mktor.MetafileCreator at-
tribute), 113

ARGS_HELP (pyrocore.scripts.pyroadmin.AdminTool at-
tribute), 113

ARGS_HELP (pyrocore.scripts.pyrotorque.RtorrentQueueManager
attribute), 114

ARGS_HELP (pyrocore.scripts.rtcontrol.RtorrentControl
attribute), 115

ARGS_HELP (pyrocore.scripts.rtevent.RtorrentEventHandler
attribute), 116

ARGS_HELP (pyrocore.scripts.rtmv.RtorrentMove
attribute), 116

ARGS_HELP (pyrocore.scripts.rtsweep.RtorrentSweep
attribute), 117

ARGS_HELP (pyrocore.scripts.rtxmlrpc.RtorrentXmlRpc
attribute), 117

ARGS_HELP (pyrocore.torrent.watch.TreeWatchCommand
attribute), 129

ARGS_HELP (pyrocore.ui.categories.CategoryManager
attribute), 130

ARGS_HELP (pyrocore.ui.theming.ThemeSwitcher at-

tribute), 130
as_dict() (pyrocore.torrent.rtorrent.RtorrentItem

method), 127
ask_bool() (pyrocore.scripts.base.PromptDecorator

method), 110
assign_fields() (in module pyrocore.util.metafile),

136
AttributeMapping (class in pyrocore.util.algo), 131
average (pyrocore.scripts.rtcontrol.FieldStatistics at-

tribute), 114

B
b (in module tempita.compat3), 140
basestring_ (in module tempita.compat3), 140
BoolFilter (class in pyrocore.util.matching), 132
bunch (class in tempita), 140
bytes (in module tempita.compat3), 141
ByteSizeFilter (class in pyrocore.util.matching),

132

C
CategoryManager (class in pyrocore.ui.categories),

130
check() (pyrocore.util.metafile.Metafile method), 136
check_for_connection() (pyro-

core.scripts.base.ScriptBaseWithConfig
method), 111

check_info() (in module pyrocore.util.metafile), 136
check_meta() (in module pyrocore.util.metafile), 136
check_process() (in module pyrocore.util.osmagic),

137
checked_open() (in module pyrocore.util.metafile),

136
CHUNK_MAX (pyrocore.util.metafile.Metafile attribute),

135
CHUNK_MIN (pyrocore.util.metafile.Metafile attribute),

135
clean_meta() (in module pyrocore.util.metafile), 136
CLEAN_PRE_VAL_RE (pyro-

core.util.matching.PatternFilter attribute),
134

CommaLexer (class in pyrocore.torrent.rtorrent), 126
command line option

-config-dir <DIR>, 16
-debug, 16
-version, 15
-h, -help, 15
-q, -quiet, 15
-v, -verbose, 15

COMPARISON_OPS (pyro-
core.util.matching.ConditionParser attribute),
133

completed (pyrocore.torrent.engine.TorrentProxy at-
tribute), 120

146 Index



pyrocore Documentation, Release 0.6.1

CompoundFilterAll (class in pyro-
core.util.matching), 132

CompoundFilterAny (class in pyro-
core.util.matching), 132

CompoundFilterBase (class in pyro-
core.util.matching), 132

ConditionParser (class in pyrocore.util.matching),
132

CONFIG_DIR_DEFAULT (pyro-
core.scripts.base.ScriptBaseWithConfig at-
tribute), 111

CONFIG_DIRS (pyrocore.scripts.pyroadmin.AdminTool
attribute), 113

CONFIG_INI (pyrocore.util.load_config.ConfigLoader
attribute), 131

CONFIG_PY (pyrocore.util.load_config.ConfigLoader
attribute), 131

ConfigLoader (class in pyrocore.util.load_config),
131

connect() (in module pyrocore), 109
console_progress() (in module pyro-

core.util.metafile), 136
CONSTANT_FIELDS (pyro-

core.torrent.rtorrent.RtorrentEngine attribute),
127

ConstantField (class in pyrocore.torrent.engine),
119

cooked() (pyrocore.scripts.rtxmlrpc.RtorrentXmlRpc
method), 118

COPYRIGHT (pyrocore.scripts.base.ScriptBase at-
tribute), 111

CORE_FIELDS (pyro-
core.torrent.rtorrent.RtorrentEngine attribute),
127

create() (pyrocore.util.load_config.ConfigLoader
method), 131

create() (pyrocore.util.metafile.Metafile method), 136
cull() (pyrocore.torrent.rtorrent.RtorrentItem

method), 127

D
daemonize() (in module pyrocore.util.osmagic), 137
data_size() (in module pyrocore.util.metafile), 136
datapath (pyrocore.util.metafile.Metafile attribute),

136
datapath() (pyrocore.torrent.engine.TorrentProxy

method), 120
datapath() (pyrocore.torrent.rtorrent.RtorrentItem

method), 127
default() (pyrocore.util.pymagic.JSONEncoder

method), 137
default_encoding (tempita.Template attribute), 140
default_inherit (tempita.Template attribute), 140

default_namespace (tempita.HTMLTemplate
attribute), 140

default_namespace (tempita.Template attribute),
140

delete() (pyrocore.torrent.engine.TorrentProxy
method), 120

delete() (pyrocore.torrent.rtorrent.RtorrentItem
method), 128

detect_traits() (in module pyro-
core.torrent.engine), 123

detect_traits() (in module pyrocore.util.traits),
138

directory (pyrocore.torrent.engine.TorrentProxy at-
tribute), 121

DiskSpaceManager (class in pyro-
core.torrent.broom), 118

do_command() (pyro-
core.scripts.rtxmlrpc.RtorrentXmlRpc method),
118

do_import() (pyro-
core.scripts.rtxmlrpc.RtorrentXmlRpc method),
118

do_repl() (pyrocore.scripts.rtxmlrpc.RtorrentXmlRpc
method), 118

do_session() (pyro-
core.scripts.rtxmlrpc.RtorrentXmlRpc method),
118

done (pyrocore.torrent.engine.TorrentProxy attribute),
121

down (pyrocore.torrent.engine.TorrentProxy attribute),
121

download_resource() (pyro-
core.scripts.pyroadmin.AdminTool method),
114

DurationFilter (class in pyrocore.util.matching),
133

DynamicField (class in pyrocore.torrent.engine), 119

E
emit() (pyrocore.scripts.rtcontrol.RtorrentControl

method), 115
engine_data() (in module pyrocore.util.stats), 138
EngineError, 139
EngineStats (class in pyrocore.torrent.jobs), 126
ENTROPY_BITS (pyro-

core.scripts.mktor.MetafileCreator attribute),
113

environment variable
PYRO_CONFIG_DIR, 10, 16, 41, 42

EqualsFilter (class in pyrocore.util.matching), 133
ERRORS_LOGGED (pyro-

core.daemon.webapp.JsonController attribute),
109

Index 147



pyrocore Documentation, Release 0.6.1

execute() (pyrocore.scripts.rtxmlrpc.RtorrentXmlRpc
method), 118

execute() (pyrocore.torrent.rtorrent.RtorrentItem
method), 128

expand_template() (in module pyro-
core.torrent.formatting), 124

F
fatal() (pyrocore.scripts.base.ScriptBase method),

111
fetch() (pyrocore.torrent.engine.TorrentProxy

method), 121
fetch() (pyrocore.torrent.rtorrent.RtorrentItem

method), 128
FIELD_SCALE (pyrocore.util.matching.FloatFilter at-

tribute), 134
FieldDefinition (class in pyrocore.torrent.engine),

119
FieldFilter (class in pyrocore.util.matching), 133
FIELDS (pyrocore.torrent.engine.FieldDefinition at-

tribute), 119
FieldStatistics (class in pyro-

core.scripts.rtcontrol), 114
files (pyrocore.torrent.engine.TorrentProxy attribute),

121
FilesFilter (class in pyrocore.util.matching), 133
Filter (class in pyrocore.util.matching), 133
filter (pyrocore.torrent.broom.SweepRule attribute),

118
filter_subst() (in module pyro-

core.torrent.formatting), 125
FilterError, 133
FilterJobBase (class in pyrocore.torrent.filter), 124
flatten() (in module pyrocore.util.algo), 131
FloatFilter (class in pyrocore.util.matching), 133
flush() (pyrocore.torrent.engine.TorrentProxy

method), 121
flush() (pyrocore.torrent.rtorrent.RtorrentItem

method), 128
fmt_delta() (in module pyrocore.torrent.formatting),

125
fmt_duration() (in module pyro-

core.torrent.formatting), 125
fmt_iso() (in module pyrocore.torrent.formatting),

125
fmt_json() (in module pyrocore.torrent.formatting),

125
fmt_mtime() (in module pyrocore.torrent.formatting),

125
fmt_pathbase() (in module pyro-

core.torrent.formatting), 125
fmt_pathdir() (in module pyro-

core.torrent.formatting), 125

fmt_pathext() (in module pyro-
core.torrent.formatting), 125

fmt_pathname() (in module pyro-
core.torrent.formatting), 125

fmt_pc() (in module pyrocore.torrent.formatting), 125
fmt_strip() (in module pyrocore.torrent.formatting),

125
fmt_sz() (in module pyrocore.torrent.formatting), 125
fno (pyrocore.torrent.engine.TorrentProxy attribute),

121
format() (pyrocore.util.metafile.MaskingPrettyPrinter

method), 135
format_item() (in module pyro-

core.torrent.formatting), 125
format_item() (pyro-

core.scripts.rtcontrol.RtorrentControl method),
115

FORMATTER_DEFAULTS (pyro-
core.scripts.rtcontrol.RtorrentControl at-
tribute), 115

formatter_help() (pyro-
core.torrent.formatting.OutputMapping class
method), 124

from_filename() (tempita.Template class method),
140

G
get_class_logger() (in module pyro-

core.util.pymagic), 137
get_filetypes() (in module pyrocore.util.traits),

138
get_lazy_logger() (in module pyro-

core.util.pymagic), 137
get_options() (pyrocore.scripts.base.ScriptBase

method), 111
get_options() (pyro-

core.scripts.base.ScriptBaseWithConfig
method), 112

get_output_fields() (pyro-
core.scripts.rtcontrol.RtorrentControl method),
115

group_by() (pyrocore.torrent.engine.TorrentEngine
method), 120

guard() (in module pyrocore.util.osmagic), 137
guarded() (pyrocore.daemon.webapp.JsonController

method), 109
guarded() (pyrocore.scripts.rtmv.RtorrentMove

method), 116

H
handle() (pyrocore.torrent.watch.MetafileHandler

method), 128
handle_completion() (pyro-

core.scripts.base.ScriptBase method), 111

148 Index



pyrocore Documentation, Release 0.6.1

handle_path() (pyro-
core.torrent.watch.TreeWatchHandler method),
129

hash (pyrocore.torrent.engine.TorrentProxy attribute),
121

hash_check() (pyrocore.torrent.engine.TorrentProxy
method), 121

hash_check() (pyrocore.torrent.rtorrent.RtorrentItem
method), 128

HashNotFound, 138
help_completion_fields() (pyro-

core.scripts.rtcontrol.RtorrentControl method),
115

help_completion_options() (pyro-
core.scripts.base.ScriptBase method), 111

html (class in tempita), 140
HTMLTemplate (class in tempita), 140

I
ignore() (pyrocore.torrent.engine.TorrentProxy

method), 121
ignore() (pyrocore.torrent.rtorrent.RtorrentItem

method), 128
IGNORE_GLOB (pyrocore.util.metafile.Metafile at-

tribute), 136
IGNORE_OPTIONS (pyro-

core.scripts.rtcontrol.RtorrentControl at-
tribute), 115

ImmutableField (class in pyrocore.torrent.engine),
119

import_name() (in module pyrocore.util.pymagic),
137

InfluxDBStats (class in pyrocore.torrent.jobs), 126
info_hash() (in module pyrocore.util.metafile), 136
INTERPOLATION_ESCAPE (pyro-

core.util.load_config.ConfigLoader attribute),
131

is_active (pyrocore.torrent.engine.TorrentProxy at-
tribute), 121

is_complete (pyrocore.torrent.engine.TorrentProxy
attribute), 121

is_ghost (pyrocore.torrent.engine.TorrentProxy
attribute), 121

is_ignored (pyrocore.torrent.engine.TorrentProxy at-
tribute), 122

is_multi_file (pyro-
core.torrent.engine.TorrentProxy attribute),
122

is_open (pyrocore.torrent.engine.TorrentProxy at-
tribute), 122

is_private (pyrocore.torrent.engine.TorrentProxy at-
tribute), 122

is_unicode() (in module tempita.compat3), 141

item() (pyrocore.torrent.rtorrent.RtorrentEngine
method), 127

items() (pyrocore.torrent.engine.TorrentEngine
method), 120

items() (pyrocore.torrent.engine.TorrentView method),
123

items() (pyrocore.torrent.rtorrent.RtorrentEngine
method), 127

J
json_charts() (pyro-

core.daemon.webapp.JsonController method),
109

json_dump() (pyro-
core.scripts.rtcontrol.RtorrentControl method),
115

json_engine() (pyro-
core.daemon.webapp.JsonController method),
109

JsonController (class in pyrocore.daemon.webapp),
109

JSONEncoder (class in pyrocore.util.pymagic), 137

K
kind (pyrocore.torrent.engine.TorrentProxy attribute),

122

L
last_xfer (pyrocore.torrent.engine.TorrentProxy at-

tribute), 122
leechtime (pyrocore.torrent.engine.TorrentProxy at-

tribute), 122
listing() (pyrocore.util.metafile.Metafile method),

136
load() (pyrocore.torrent.watch.MetafileHandler

method), 128
load() (pyrocore.util.load_config.ConfigLoader

method), 131
load_config() (pyro-

core.torrent.engine.TorrentEngine method),
120

load_config() (pyro-
core.torrent.rtorrent.RtorrentEngine method),
127

loaded (pyrocore.torrent.engine.TorrentProxy at-
tribute), 122

log() (pyrocore.torrent.engine.TorrentEngine method),
120

log() (pyrocore.torrent.rtorrent.RtorrentEngine
method), 127

LoggableError, 139
LOGGING_CFG (pyrocore.scripts.base.ScriptBase

attribute), 111

Index 149



pyrocore Documentation, Release 0.6.1

lookup() (pyrocore.torrent.engine.FieldDefinition
class method), 119

lookup_announce_alias() (in module pyro-
core.config), 139

M
MagicFilter (class in pyrocore.util.matching), 134
main() (pyrocore.torrent.watch.TreeWatchCommand

class method), 129
mainloop() (pyrocore.scripts.base.ScriptBase

method), 111
mainloop() (pyrocore.scripts.chtor.MetafileChanger

method), 112
mainloop() (pyrocore.scripts.hashcheck.MetafileChecker

method), 112
mainloop() (pyrocore.scripts.lstor.MetafileLister

method), 113
mainloop() (pyrocore.scripts.mktor.MetafileCreator

method), 113
mainloop() (pyrocore.scripts.pyroadmin.AdminTool

method), 114
mainloop() (pyrocore.scripts.pyrotorque.RtorrentQueueManager

method), 114
mainloop() (pyrocore.scripts.rtcontrol.RtorrentControl

method), 115
mainloop() (pyrocore.scripts.rtevent.RtorrentEventHandler

method), 116
mainloop() (pyrocore.scripts.rtmv.RtorrentMove

method), 116
mainloop() (pyrocore.scripts.rtsweep.RtorrentSweep

method), 117
mainloop() (pyrocore.scripts.rtxmlrpc.RtorrentXmlRpc

method), 118
mainloop() (pyrocore.torrent.watch.TreeWatchCommand

method), 129
mainloop() (pyrocore.ui.categories.CategoryManager

method), 130
mainloop() (pyrocore.ui.theming.ThemeSwitcher

method), 130
make_app() (in module pyrocore.daemon.webapp),

110
make_magnet_meta() (pyro-

core.scripts.mktor.MetafileCreator method),
113

map_announce2alias() (in module pyro-
core.config), 139

mask_keys() (in module pyrocore.util.metafile), 136
MaskingPrettyPrinter (class in pyro-

core.util.metafile), 135
match() (pyrocore.util.matching.BoolFilter method),

132
match() (pyrocore.util.matching.CompoundFilterAll

method), 132

match() (pyrocore.util.matching.CompoundFilterAny
method), 132

match() (pyrocore.util.matching.DurationFilter
method), 133

match() (pyrocore.util.matching.EqualsFilter method),
133

match() (pyrocore.util.matching.FilesFilter method),
133

match() (pyrocore.util.matching.Filter method), 133
match() (pyrocore.util.matching.MagicFilter method),

134
match() (pyrocore.util.matching.NegateFilter method),

134
match() (pyrocore.util.matching.NumericFilterBase

method), 134
match() (pyrocore.util.matching.PatternFilter method),

134
match() (pyrocore.util.matching.TaggedAsFilter

method), 135
message (pyrocore.torrent.engine.TorrentProxy at-

tribute), 122
Metafile (class in pyrocore.util.metafile), 135
metafile (pyrocore.torrent.engine.TorrentProxy

attribute), 122
METAFILE_EXT (pyro-

core.torrent.watch.TreeWatchHandler at-
tribute), 129

MetafileChanger (class in pyrocore.scripts.chtor),
112

MetafileChecker (class in pyro-
core.scripts.hashcheck), 112

MetafileCreator (class in pyrocore.scripts.mktor),
113

MetafileHandler (class in pyrocore.torrent.watch),
128

MetafileLister (class in pyrocore.scripts.lstor), 112
module_test() (in module pyro-

core.daemon.webapp), 110
module_test() (in module pyrocore.torrent.jobs),

126
multicall() (pyro-

core.torrent.rtorrent.RtorrentEngine method),
127

MutableField (class in pyrocore.torrent.engine), 119
my_init() (pyrocore.torrent.watch.TreeWatchHandler

method), 129

N
name (pyrocore.torrent.broom.SweepRule attribute), 119
name (pyrocore.torrent.engine.TorrentProxy attribute),

122
name_trait() (in module pyrocore.util.traits), 138
NEEDS_FAKE_TARGET (pyro-

core.util.xmlrpc.RTorrentMethod attribute),

150 Index



pyrocore Documentation, Release 0.6.1

138
NegateFilter (class in pyrocore.util.matching), 134
NetworkError, 139
next() (in module tempita.compat3), 141
NumericFilterBase (class in pyro-

core.util.matching), 134

O
OnDemandField (class in pyrocore.torrent.engine),

120
open() (pyrocore.scripts.rtxmlrpc.RtorrentXmlRpc

method), 118
open() (pyrocore.torrent.engine.TorrentEngine

method), 120
open() (pyrocore.torrent.rtorrent.RtorrentEngine

method), 127
OPTIONAL_CFG_FILES (pyro-

core.scripts.base.ScriptBaseWithConfig at-
tribute), 111

OPTIONAL_CFG_FILES (pyro-
core.scripts.pyroadmin.AdminTool attribute),
113

OPTIONAL_CFG_FILES (pyro-
core.scripts.pyrotorque.RtorrentQueueManager
attribute), 114

OPTIONAL_CFG_FILES (pyro-
core.torrent.watch.TreeWatchCommand at-
tribute), 129

order (pyrocore.torrent.broom.SweepRule attribute),
119

OutputMapping (class in pyro-
core.torrent.formatting), 124

P
parse() (pyrocore.torrent.watch.MetafileHandler

method), 129
parse() (pyrocore.util.matching.ConditionParser

method), 133
parse_cond() (in module pyrocore.torrent.broom),

119
parse_route() (pyrocore.daemon.webapp.Router

class method), 110
parse_sz() (in module pyrocore.torrent.formatting),

125
path (pyrocore.torrent.engine.TorrentProxy attribute),

122
PatternFilter (class in pyrocore.util.matching), 134
percent() (in module pyrocore.torrent.engine), 124
POLL_TIMEOUT (pyro-

core.scripts.pyrotorque.RtorrentQueueManager
attribute), 114

pre_filter() (pyrocore.util.matching.BoolFilter
method), 132

pre_filter() (pyrocore.util.matching.ByteSizeFilter
method), 132

pre_filter() (pyro-
core.util.matching.CompoundFilterAll
method), 132

pre_filter() (pyro-
core.util.matching.CompoundFilterAny
method), 132

pre_filter() (pyrocore.util.matching.Filter
method), 133

pre_filter() (pyrocore.util.matching.FloatFilter
method), 134

pre_filter() (pyrocore.util.matching.NegateFilter
method), 134

pre_filter() (pyrocore.util.matching.PatternFilter
method), 134

pre_filter() (pyro-
core.util.matching.TaggedAsFilter method),
135

pre_filter() (pyrocore.util.matching.TimeFilter
method), 135

PRE_FILTER_FIELDS (pyro-
core.util.matching.FieldFilter attribute),
133

PREFETCH_FIELDS (pyro-
core.scripts.rtmv.RtorrentMove attribute),
116

PREFETCH_FIELDS (pyro-
core.torrent.rtorrent.RtorrentEngine attribute),
127

PREFIX (pyrocore.ui.categories.CategoryManager at-
tribute), 130

PREFIX_LEN (pyrocore.ui.categories.CategoryManager
attribute), 130

preparse() (in module pyrocore.torrent.formatting),
125

pretty_path() (in module pyrocore.scripts.rtmv),
117

print_help_fields() (in module pyro-
core.scripts.rtcontrol), 116

prio (pyrocore.torrent.broom.SweepRule attribute), 119
prio (pyrocore.torrent.engine.TorrentProxy attribute),

122
PRIO_OPTIONS (pyro-

core.scripts.rtcontrol.RtorrentControl at-
tribute), 115

process_default() (pyro-
core.torrent.watch.TreeWatchHandler method),
130

process_IN_CLOSE_WRITE() (pyro-
core.torrent.watch.TreeWatchHandler method),
129

process_IN_MOVED_TO() (pyro-
core.torrent.watch.TreeWatchHandler method),

Index 151



pyrocore Documentation, Release 0.6.1

130
PromptDecorator (class in pyrocore.scripts.base),

110
purge() (pyrocore.torrent.rtorrent.RtorrentItem

method), 128
PYRO2RT_MAPPING (pyro-

core.torrent.rtorrent.RtorrentEngine attribute),
127

PYRO_CONFIG_DIR, 10, 41, 42
pyrocore (module), 109
pyrocore.config (module), 139
pyrocore.daemon (module), 109
pyrocore.daemon.webapp (module), 109
pyrocore.error (module), 139
pyrocore.scripts (module), 110
pyrocore.scripts.base (module), 110
pyrocore.scripts.chtor (module), 112
pyrocore.scripts.hashcheck (module), 112
pyrocore.scripts.lstor (module), 112
pyrocore.scripts.mktor (module), 113
pyrocore.scripts.pyroadmin (module), 113
pyrocore.scripts.pyrotorque (module), 114
pyrocore.scripts.rtcontrol (module), 114
pyrocore.scripts.rtevent (module), 116
pyrocore.scripts.rtmv (module), 116
pyrocore.scripts.rtsweep (module), 117
pyrocore.scripts.rtxmlrpc (module), 117
pyrocore.torrent (module), 118
pyrocore.torrent.broom (module), 118
pyrocore.torrent.engine (module), 119
pyrocore.torrent.filter (module), 124
pyrocore.torrent.formatting (module), 124
pyrocore.torrent.jobs (module), 126
pyrocore.torrent.queue (module), 126
pyrocore.torrent.rtorrent (module), 126
pyrocore.torrent.watch (module), 128
pyrocore.ui (module), 130
pyrocore.ui.categories (module), 130
pyrocore.ui.theming (module), 130
pyrocore.util (module), 131
pyrocore.util.algo (module), 131
pyrocore.util.load_config (module), 131
pyrocore.util.matching (module), 132
pyrocore.util.metafile (module), 135
pyrocore.util.osmagic (module), 137
pyrocore.util.pymagic (module), 137
pyrocore.util.stats (module), 138
pyrocore.util.traits (module), 138
pyrocore.util.xmlrpc (module), 138

Q
QueueManager (class in pyrocore.torrent.queue), 126
quit() (pyrocore.scripts.base.PromptDecorator

method), 110

QUIT_RC (pyrocore.scripts.base.PromptDecorator at-
tribute), 110

R
ratio (pyrocore.torrent.engine.TorrentProxy attribute),

122
ratio_float() (in module pyrocore.torrent.engine),

124
RC_CONTINUATION_THRESHOLD (pyro-

core.scripts.pyroadmin.AdminTool attribute),
114

read_blob() (in module pyrocore.scripts.rtxmlrpc),
118

realpath (pyrocore.torrent.engine.TorrentProxy
attribute), 122

RemoteWatch (class in pyrocore.torrent.watch), 129
repl_usage() (pyro-

core.scripts.rtxmlrpc.RtorrentXmlRpc method),
118

replace_fields() (in module pyro-
core.scripts.chtor), 112

resolve_slashed() (pyro-
core.scripts.rtmv.RtorrentMove method),
117

Router (class in pyrocore.daemon.webapp), 109
ROUTES_RE (pyrocore.daemon.webapp.Router at-

tribute), 110
RT2PYRO_MAPPING (pyro-

core.torrent.rtorrent.RtorrentEngine attribute),
127

RT_RESUMT_KEYS (pyro-
core.scripts.chtor.MetafileChanger attribute),
112

RTORRENT_RC_ALIASES (pyro-
core.torrent.rtorrent.RtorrentEngine attribute),
127

RTORRENT_RC_KEYS (pyro-
core.torrent.rtorrent.RtorrentEngine attribute),
127

RtorrentControl (class in pyro-
core.scripts.rtcontrol), 114

RtorrentEngine (class in pyrocore.torrent.rtorrent),
126

RtorrentEventHandler (class in pyro-
core.scripts.rtevent), 116

RtorrentItem (class in pyrocore.torrent.rtorrent),
127

RTorrentMethod (class in pyrocore.util.xmlrpc), 138
RtorrentMove (class in pyrocore.scripts.rtmv), 116
RTorrentProxy (class in pyrocore.util.xmlrpc), 138
RtorrentQueueManager (class in pyro-

core.scripts.pyrotorque), 114
RtorrentSweep (class in pyrocore.scripts.rtsweep),

117

152 Index



pyrocore Documentation, Release 0.6.1

RtorrentXmlRpc (class in pyrocore.scripts.rtxmlrpc),
117

ruleset (pyrocore.torrent.broom.SweepRule attribute),
119

run() (in module pyrocore.scripts.chtor), 112
run() (in module pyrocore.scripts.hashcheck), 112
run() (in module pyrocore.scripts.lstor), 113
run() (in module pyrocore.scripts.mktor), 113
run() (in module pyrocore.scripts.pyroadmin), 114
run() (in module pyrocore.scripts.pyrotorque), 114
run() (in module pyrocore.scripts.rtcontrol), 116
run() (in module pyrocore.scripts.rtevent), 116
run() (in module pyrocore.scripts.rtmv), 117
run() (in module pyrocore.scripts.rtsweep), 117
run() (in module pyrocore.scripts.rtxmlrpc), 118
run() (in module pyrocore.torrent.rtorrent), 128
run() (in module pyrocore.ui.categories), 130
run() (in module pyrocore.ui.theming), 131
run() (pyrocore.scripts.base.ScriptBase method), 111
run() (pyrocore.torrent.filter.FilterJobBase method),

124
run() (pyrocore.torrent.jobs.EngineStats method), 126
run() (pyrocore.torrent.jobs.InfluxDBStats method),

126
run() (pyrocore.torrent.queue.QueueManager method),

126
run() (pyrocore.torrent.watch.RemoteWatch method),

129
run() (pyrocore.torrent.watch.TreeWatch method), 129
run_filter() (pyrocore.torrent.filter.ActionRule

method), 124
run_filter() (pyrocore.torrent.filter.FilterJobBase

method), 124
run_filter() (pyrocore.torrent.filter.TorrentMirror

method), 124

S
sanitize() (in module pyrocore.util.metafile), 136
ScriptBase (class in pyrocore.scripts.base), 110
ScriptBaseWithConfig (class in pyro-

core.scripts.base), 111
seedtime (pyrocore.torrent.engine.TorrentProxy

attribute), 122
sessionfile (pyrocore.torrent.engine.TorrentProxy

attribute), 122
set_custom() (pyrocore.torrent.engine.TorrentProxy

method), 123
set_custom() (pyrocore.torrent.rtorrent.RtorrentItem

method), 128
set_prio() (pyrocore.torrent.rtorrent.RtorrentItem

method), 128
set_throttle() (pyro-

core.torrent.engine.TorrentProxy method),
123

set_throttle() (pyro-
core.torrent.rtorrent.RtorrentItem method),
128

setup() (pyrocore.scripts.base.ScriptBase class
method), 111

setup() (pyrocore.torrent.watch.TreeWatch method),
129

show() (pyrocore.torrent.engine.TorrentEngine
method), 120

show() (pyrocore.torrent.rtorrent.RtorrentEngine
method), 127

show_in_view() (pyro-
core.scripts.rtcontrol.RtorrentControl method),
116

size (pyrocore.torrent.engine.TorrentProxy attribute),
123

size() (pyrocore.torrent.engine.TorrentView method),
123

SPLIT_PRE_GLOB_RE (pyro-
core.util.matching.PatternFilter attribute),
134

SPLIT_PRE_VAL_RE (pyro-
core.util.matching.PatternFilter attribute),
134

start() (pyrocore.torrent.engine.TorrentProxy
method), 123

start() (pyrocore.torrent.rtorrent.RtorrentItem
method), 128

started (pyrocore.torrent.engine.TorrentProxy at-
tribute), 123

StaticFolders (class in pyrocore.daemon.webapp),
110

STD_LOG_LEVEL (pyrocore.scripts.base.ScriptBase at-
tribute), 111

STD_LOG_LEVEL (pyro-
core.scripts.rtxmlrpc.RtorrentXmlRpc at-
tribute), 117

STD_LOG_LEVEL (pyro-
core.torrent.watch.TreeWatchCommand at-
tribute), 129

stop() (pyrocore.torrent.engine.TorrentProxy method),
123

stop() (pyrocore.torrent.rtorrent.RtorrentItem
method), 128

stopped (pyrocore.torrent.engine.TorrentProxy at-
tribute), 123

sub() (in module tempita), 140
sub_html() (in module tempita), 140
substitute() (tempita.Template method), 140
SweepRule (class in pyrocore.torrent.broom), 118

T
tag() (pyrocore.torrent.engine.TorrentProxy method),

123

Index 153



pyrocore Documentation, Release 0.6.1

tag() (pyrocore.torrent.rtorrent.RtorrentItem method),
128

tagged (pyrocore.torrent.engine.TorrentProxy at-
tribute), 123

TaggedAsFilter (class in pyrocore.util.matching),
134

tempita (module), 139
tempita.compat3 (module), 140
Template (class in tempita), 140
TemplateError, 140
ThemeSwitcher (class in pyrocore.ui.theming), 130
throttle (pyrocore.torrent.engine.TorrentProxy

attribute), 123
TIMEDELTA_RE (pyrocore.util.matching.TimeFilter at-

tribute), 135
TIMEDELTA_UNITS (pyro-

core.util.matching.TimeFilter attribute),
135

TimeFilter (class in pyrocore.util.matching), 135
TimeFilterNotNull (class in pyro-

core.util.matching), 135
TorrentEngine (class in pyrocore.torrent.engine),

120
TorrentMirror (class in pyrocore.torrent.filter), 124
TorrentProxy (class in pyrocore.torrent.engine), 120
TorrentView (class in pyrocore.torrent.engine), 123
tracker (pyrocore.torrent.engine.TorrentProxy at-

tribute), 123
traits (pyrocore.torrent.engine.TorrentProxy at-

tribute), 123
TreeWatch (class in pyrocore.torrent.watch), 129
TreeWatchCommand (class in pyro-

core.torrent.watch), 129
TreeWatchHandler (class in pyro-

core.torrent.watch), 129
truth() (in module pyrocore.util.matching), 135

U
UNITS (pyrocore.util.matching.ByteSizeFilter attribute),

132
unquote_pre_filter() (in module pyro-

core.util.matching), 135
untyped() (in module pyrocore.torrent.engine), 124
up (pyrocore.torrent.engine.TorrentProxy attribute), 123
uploaded (pyrocore.torrent.engine.TorrentProxy

attribute), 123
uptime (pyrocore.torrent.rtorrent.RtorrentEngine at-

tribute), 127
UserError, 139

V
validate() (in module pyrocore.util.load_config), 131
validate() (pyrocore.util.matching.BoolFilter

method), 132

validate() (pyrocore.util.matching.ByteSizeFilter
method), 132

validate() (pyrocore.util.matching.DurationFilter
method), 133

validate() (pyrocore.util.matching.FieldFilter
method), 133

validate() (pyrocore.util.matching.FloatFilter
method), 134

validate() (pyrocore.util.matching.MagicFilter
method), 134

validate() (pyrocore.util.matching.NumericFilterBase
method), 134

validate() (pyrocore.util.matching.PatternFilter
method), 134

validate() (pyrocore.util.matching.TaggedAsFilter
method), 135

validate() (pyrocore.util.matching.TimeFilter
method), 135

validate() (pyrocore.util.matching.TimeFilterNotNull
method), 135

validate_field_list() (in module pyro-
core.torrent.formatting), 125

validate_output_format() (pyro-
core.scripts.rtcontrol.RtorrentControl method),
116

validate_sort_fields() (in module pyro-
core.torrent.formatting), 126

validate_sort_fields() (pyro-
core.scripts.rtcontrol.RtorrentControl method),
116

validate_time() (pyro-
core.util.matching.TimeFilter method), 135

VERSION (pyrocore.scripts.base.ScriptBase attribute),
111

view() (in module pyrocore), 109
view() (pyrocore.torrent.engine.TorrentEngine

method), 120
VIEWNAME (pyrocore.torrent.queue.QueueManager at-

tribute), 126
views (pyrocore.torrent.engine.TorrentProxy attribute),

123

W
walk() (pyrocore.util.metafile.Metafile method), 136
walk_resources() (in module pyro-

core.util.load_config), 131

X
xfer (pyrocore.torrent.engine.TorrentProxy attribute),

123
XmlRpcError, 138

154 Index


	Contents of This Manual
	Overview
	Installation Guide
	Configuration Guide
	User’s Manual
	Tips & How-Tos
	Advanced Features
	Custom Python Code
	Trouble-Shooting Guide
	Software Updates
	Tempita Templating Engine
	References
	License
	Experimental Features
	API Documentation
	Contributing Guidelines
	Indices & Tables

	Python Module Index
	Index

